Industrial controller KS 92

Contents
DAC - motor actuator monitoring 9
Self-tuning 10
Front view 3 Parameter and configuration level 11
Safety notes 3 Configuration 12
Electromagnetic compatibility 3
General 12
Technical data Technical data 13
3 Main groups
Basic structure. 12Maintenance
16
16
CONTR: Controller
CONTR: Controller 18
SOURCE: Input signal allocation.
Further information 20
INPUT: inputs. 23
Mounting 25
Electrical connections 26 5OUTPT: outputs
Notes
Connecting input INP1 5DISP: User interface for operation26
Connecting input INP66 Parameters27Connecting input INP56 General29Connecting the power supply6 General29
Connecting the outputs OUT2/4/5 6 Time function 316 Set-point function31
Connecting output OUT1 6 Programmer functions 31
Digital inputs and outputs (di / do) 6 Alarm function 32
Connecting the bus interface 7 Self-tuning. 32
Versions with integrated supply voltage 7 Control algorithm 33
Operation (survey) Input processing 33
The menus 1... 3
Miscellaneous 34 8
The operating level 8
Operating the programmer: 9
Calibration:
34
Signals
35
Input and output allocation 35
9 Versions 35

Symbol definition:

!General warning (caution, following the warnings in the instruction)

Protective earth
$\stackrel{\perp}{=}$ Earth connection
DAC^{\circledR} is a patented method and a registered trademark of Regeltechnik Kornwestheim GmbH.

All rights reserved. No part of this documentation may be reproduced or published in any form or by any means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen-Automation.
Subject to alterations without notice.
© PMA Prozeß- ind Maschinen-Automation GmbH 2000, Printed in Germany (0003).
PMA Prozeß- ind Maschinen-Automation GmbH
P.O.Box 310229

D-34058 Kassel
Germany

1. Front view

- Locking screw: Locks the controller module in the housing.
- LEDs: indicates the statuses of controller outputs Y1, Y2 and alarms LIM1, LIM2 (other settings at configuration level $5.8 \mathrm{Ba} ; \mathrm{LEd} \rightarrow$ page 26).
- Display 1: indicatess process value at operating and parameter level, or the configuration code at configuration level.
- Display 2: indicates the set-point (automatic mode) or the correcting value (manual mode) in operating level. The values are adjustable directly with $\Delta \boldsymbol{\nabla}$. Further displays at operating level \rightarrow page 7 . In parameter and configuration level, values and codes described with textl are indicated (\rightarrow page 11).
- Text 1: indicates the short-form dialogue or the unit of display 2.
- Text 2: indicates the output bargraph (other selections possible in configuration level C.800).
- Keys $0 \backslash \square \square$: For the certain function \rightarrow pages 8 and 11.
- PC interface: PC connection for configuration/parameter setting/operation with an engineering tool.

2. Safety notes

Following the enclosed safety instructions 949904707101 is indispensable!
The insulation of the instrument conforms to EN 61 010-1 with pollution degree 2, overvoltage category III, operating voltage 300 V and protection class I. Additional with horizontal installation, a protection to prevent live part, e.g. wire ends, from dropping into the open housing of a withdrawn controller must be fitted.

3. Electromagnetic compatibility

The instrument conforms to European Directive 89/336/EEC and will be provideed with the CE-marking. The following European Generic Standards are met: Emission: EN 50081-2 and Immunity: EN 50082-2. The unit is suitable for use in industrial areas (in residential areas, RF interference may occur). The electromagnetic radiation can be reduced decisively by installing the unit in a grounded metal switch cabinet.

4. Technical data \rightarrow data sheet, order no. 949873728333

5. Maintenance / Behaviour in case of trouble

The controller needs no maintenance. The rules to be followed in case of trouble are:

- Check mains (voltage, frequency and correct connections), • check, if all connections are correct,
- check the correct funktion of the sensors and final elements, \bullet check the configuration words for required functions and \bullet check the adjusted parameters for required operation. If the controller still does not work properly after these checks, shut down the controller and replace it.
Cleaning:Housing and Front can be cleaned by means of a dry, lint-free cloth. No use of solvents or cleansing agents!

6. Further information

A manual with the order no. 949904044811 gives further information to the chapters of this operating notes.
7. Mounting

S.I.L. switch: with the switch closed, transition to parameter and configuration level is disabled. When making an attempt to change over to the parameter level, "Freal" is displayed (text1). Correcting variable, set-point and parameters at the "extended operating level" remain available for selecting and changing. For access to the S.I.L. switch, release the locking screw and withdraw the instrument module from the housing. Subsequently, re-insert the controller module into the housing and mount it with screws.

Protection mode IP65: 4 fixing clamps must be used. The instruments insert must be placed strongly an locked strongly by means of the locking screw.

Caution! The instrument contains ESD-hazarded components.

Electrical connections

8. Electrical connections

* Versions with integrated supply voltage (connection example look at page 7)

8.1. Notes

The ground connection of earth terminal A11 (terminal P13 with continuous controllers, too) should be kept separate from the mains and as short as possible (15 cm during test). Keep mains cables separate from signal and measurement input leads. We recommend twisted and screened measurement input leads (screen contacted to measurement earth).
\square When connecting a contactor to a relay output, an RC protective circuit is necessary, to avoid voltage peaks which can cause trouble to the controller.
Individual or common fuse protection must be fitted (1 A per instrument).

8.2. Connecting input INP1

Input for main process value x 1 (actual value).
a Thermocouple
\boldsymbol{b} Resistance thermometer (Pt 100)
c Temperature difference ($७ 1-\vartheta 2$) (2x Pt 100)
d Potentiometric transducer \boldsymbol{e} Current $(0 / 4 \ldots 20 \mathrm{~mA})$
f Voltage ($0 / 2 \ldots 10 \mathrm{~V}$)

8.3. Connecting input INP6 (2)

For position feedback with 3-point stepping controller (other selections possible in configuration level L. 18:).

8.4. Connecting input INP5 (3)

Input for process value x 2 or external set-point or external

set-point offset (configuration level L. 18 AL). With voltage signals,
A6 must be connected to the reference potential at A9.

8.5. Connecting the power supply (5)

Depending on the version, the instrument is supplied with: 230 V AC or 115 V AC.. The indicated values are the limits. The protective earth must be connected to terminal P3.

8.6. Connecting the outputs OUT2/4/5 6

Relay outputs, corresponding to the controller output Y2 or the alarms LIM1 / LIM2 (other selections possible in configuration level. See page 23).

8.7. Connecting output OUT1 7

Depending on the version, OUT1 is a relay, logic or continuous output corresponding to the controller output Y1 (other selections in configuration level). With logic and continuous outputs, P13 must be connected to the earth terminal. The logic signal is $0 />20 \mathrm{~mA}(\operatorname{load} \leq 600 \Omega)$ or $0 />12 \mathrm{~V}(\operatorname{load} \geq 600 \Omega)$.

8.8. Digital inputs and outputs (di / do) 48910121314)

The inputs operate as current sink (IEC 1131 type1), logic „ 0 " $=-3 \ldots 5 \mathrm{~V}, \operatorname{logic} " 1 "=15 \ldots 30 \mathrm{~V}$. The outputs operate as „grounded load". They are short circuit protected and contain recovery diodes. The digital input and supply voltage (24 V) must be connected on each circuit board.

4 di1 / di2 control various actions (set in configuration level [.198/L.19 (and parameter Blcki/Blek2)
$9 \quad \mathbf{d i 3}$ is used for changeover Local mode(0) \leftrightarrow Remote mode(1).
(10) di4...di7 and do1...do4 are correlated to the programmer as follows:
di4 Program STOP $(0) \leftrightarrow$ RUN (1) do1 Status fo control output 1
di5 Program normal (0) \leftrightarrow RESET (1) do2 Status fo control output 2 do3 Status fo control output 3 do4 Status fo control output 4

8 The digital inputs and outputs must be supplied from one or several external 24 V dc sources (current consumption $5 \mathrm{~mA} /$ input, max. load $=0,1 \mathrm{~A}$ /output). Examples:

Digital inputs (connect. A)
Digital inputs and outputs with one de source (e.g. connector B)

Digital inputs and outputs with two dc sources (e.g. connector B)

8.9. Connecting the bus interface (11)

TTL level or RS422 or RS485. With TTL level, an interface module for conversion to RS422/RS485 is required. 4 units may be connected to an interface module.

8.10. Versions with integrated supply voltage

The supply voltage can be used only for energization of a 2 -wire transmitter or for energization of max. 4 control inputs. The supply voltage is potential-free and can also be used for energizing inputs INP3 ... INP6 or for other units. Selection of supply voltage or digital inputs is by S.I.L. switches (see figure below).

The supply voltage is only applied to terminals A12 and A14 with INP1
 switches set for transmitter supply (factory setting)! With the S.I.L. switches set to digital input, the voltage is applied to terminals A1 and A4 independent of the configuration of input INP1. In this case, the voltage input of INP5 is not available.

Supply voltage for energization of digital input (e.g. di1...di4)

External use of the supply voltage

Connection of a 2-wire transmitter on example of INP1 or INP5

Operation（survey）

9．Operation（survey）

The user manual（order no． 949904044811 ）is required for the complete operation．

9．1．The menues $1 . . .3$

Apart from the parameter and configuration words，the following dialogue words are used（Text1）：

Text1		Signification
CEUS	CFrnt．	PC communication via interface at terminals B12．．．B16 or connection on the unit front
Cle．ar＊		
Clowk		Adjust the clock
Corf		Transition to configuration level
Erad		Return to the previous selection menu
Exit．		Return to operating level（main display）
Hold		The displayed parameter is determined as standard indication．
Mark		The displayed parameter is stored as additional display at operating level（ \rightarrow Cl le．ar＊）
More		The configuration level area described with MORE is accesible
DSt．ar＊	0Stor	Self－tuning will be started or stopped
P＇ar ${ }^{\text {Pre }}$		Transition to parameter level
PR＇urio	F＇stor	Programmer will be started or stopped
F＇Sご．	FRes	Programmer will be set to a specified program point or reset to the reset point
Duit．		Return to operating level（main display）without storage of the values changed last

9．2．The operating level

The operating level comprises main display（1）and extension（2）．During the main display，automatic or manual operation can be selected（유））．With automatic，the set－point，and with manual，the correcting value can be adjusted directly $(\Delta \boldsymbol{\nabla})$ ．In the extension，the number and sequence of displays is dependent of selected functions．Max． 12 parameters from the parameter level can be displayed
 displayed continuously with the Hol function．（Press $\square<3 \mathrm{~s} \rightarrow$ Select parameter（press $\Delta \nabla$ ）\rightarrow $\square>3 \mathrm{~s} \rightarrow$ Select Hold（Press $\Delta \boldsymbol{\nabla}) \rightarrow(\square)$ ．The extension can be left with Exit and \square or after a timeout of 60 s or with O_{N} ．With O_{N} ，the other operating mode is also selected．

If the set－point is set to＇－－＇by means of ∇ ，the controller is switched off！！

 PRes；F＇Get．）and transition to parameter level（F＇ar•日）．

9.3. Operating the programmer:

The programmer can be operated (run, stop, reset, preset) with menu 1, via digital inputs or via the interface (process management system).

Menu I! (flashes)

When entering the preset time (parameter setting: Frode $=1$) the time can be entered up to 99.59 in hours . minutes, or only in hours with longer times.

9.4. Calibration:

[-8) Calibation is only possible with the controller set to manual mode.
Calibration from INP1/6 ($\mathrm{T}^{\prime} \cdot \mathrm{F}=$ = 40; Potentiometric transducer) is in two steps.

- Select x ब $\mathrm{E}-\rightarrow$ Press \square (blinking) \rightarrow set transducer to 0%, wait 6 s and confirm with \square.
- Select $\times 16 \mathrm{G} \mathrm{E} \rightarrow$ Press $\square(\square$ blinking $) \rightarrow$ set transducer to 100%, wait 6 s and confirm with \square. Manual calibration of INP6 is only possible with the DAC function switched off. With the DAC function switched on, automatic calibration is possible (\rightarrow DAC page 9).
- For selecting Y Figl , press \rightarrow (\mathbb{Q} blinks) change to 1 with Δ and acknowledge with \square \rightarrow automatic calibration is started.

The parameter KO and $\mathrm{K10}$ can be allocated to the extended operating level.

9.5. DAC - motor actuator monitoring (Digital Actor Control DAC®)

With all controllers with position feedback Yp, the motor actuator can be monitored for functional troubles.
CFLITG = $08=3$-point stepping controller with position feedback as a potentiometer
EFblic $=09=$ continuous with position feedback as a potentiometer
CFLALG = 12 = continuous with current feedback via Yp (INP6)
The system detects the following stepping controller errors:

- defective motor
- defective capacitor (wrong rotating direction),
- wrong phase followers
- defective force transmission at spindle or drive,
- excessive backlash due to wear
- jamming of the control valve e.g. due to foreign body

With the continuous controllers, monitoring if output signal and position feedback exceed a difference of 10% after elapse of a 20 s filter time is provided. The DAC® function can be switched on or off at parameter setting level ($\mathrm{DAC}=0 / 1$). A detected trouble is indicated, the controller switches to manual mode and no pulses are output any more.
During Yp calibration, the DAC ® function is activated! Otherwise, disabling would be detected when reaching the limits and the controller would be switched to "off" (r calibration).

Operation (survey)

9.6. Self-tuning (automatic optimization of control parameters)

After starting by the operator, the controller makes an attempt for optimization by determining the parameters for fast line-out at the set-point without overshoot from the process characteristics.
 time (see opposite drawing).

Preparation for self-tuning:

- PID, PI, PD or P control behaviour can be selected by the user by switching off $\mathrm{Tn}=0$ or $\mathrm{Tv}=0$ before self-tuning start.
- Determine the output step change (1) Wot.).

- Determine the 'process-at-rest' mode (5.700 ; DCorid)
- Is the set-point reserve $(x-w)>10 \%$ of W100-W0?

Self-tuning cancelation:

The operator can cancel the optimization attempt at any time. This is possible by pressing key 园 (\rightarrow controller switches to 'manual') or via Dtor in menul $(\rightarrow$ controller switches to 'automatic'). The controller continues operating with the old parameter values.

Optimization problems:

With process conditions which prevent successful optimization, the controller
 are switched off to prevent the set-point from being exceeded. Afer self-tuning cancelation, controlling is continued with the old parameter values.

9.7. Parameter and configuration level

Мепи 1 is always selectable at operating level: several operations and transition to parameter level (F :ar`...).
Menu 2 is always selectable at parameter level: selection of additional displays ($\mathbf{l l}^{\mathbf{1} \cdot r^{-} \mathrm{k} \text {) , return to }}$ parameter level (End), return to operating level (Exit), transition to configuration level (Corf).

 with storage of the changes (Exit.).

Value adjustment is as follows (parameter values / configuration codes):

Example for a single value

Example for combined data (e.g. C-codes)

Configuration

10. Configuration

10.1. General

The KS92 controller configuration for quick and easy function selection during subsequent operation is described in this section. During configuration, the required functions are selected from a large variety of available functions. The configuration determines the basic structure for solution of an application.
The configuration structure is designed so that determination of the required functions for a large number of applications is possible by adjustment of as few configuration words as possible. Moreover, the structure was designed flexible enough to permit additional configurations also for realization of special applications.

10.2. Basic structure

The first menu level permits selection of the main configuration group.
The user can be guided through all function configurations, or he can configure the specific functions required for his application directly.
For all 'complex' main groups, a two-level configuration concept which enables the user to select the 'correct' setting for his application by defining only one configuration word was determined. If necessary, special functions can be determined separately. For the 'normal user', however, the configuration words are preset to purposeful default values! For simplification, the hierarchic configuration dialogue is structured so that the user can and must adjust only the 'required' configuration words.

The user configuration dialogue is started via selector key \square and 'increment' / 'decrement' keys $\Delta \boldsymbol{\nabla}$, like with the other KS92/94 operating levels:

- Press the selector key to select menu items / input values / input positions within a 'level' and to change over to the next higher level at the end of a 'level'.
- Press the 'increment' / 'decrement' keys for returning to a lower level and for modification of input values.

The configuration structure is shown on the two following pages (10 and 11). All possible configuration words are listed. Configuration words which are irrelevant for a function are not displayed during the dialogue!

Switch-over to a selection menu is possible from anywhere during configuration by pressing key \square $>3 \mathrm{~s}$.
Erial: Return to configuration level Mor=e: \quad Activating the More function Dut.: Return to operating level (configuration changes are not effective)
Exit: \quad Return to operating level (configuration changes are effective and the controller is re-initialized).

Configuration

10.3. Main groups

The following main configuration groups are available for KS9x controller configuration:

Co	Controller function	[. 180	... 5.139	\rightarrow page 16
Sourco	Input allocation	[. 180	[.192	\rightarrow page 18
Iriput.	Input function	5.380	5.487	\rightarrow page 20
Dut.pt.	Output function	5.505	5.597	\rightarrow page 23
Al.arm	Alarm function	5.504	[55]	\rightarrow page 25
T-41゚	Self-tuning	5.700		\rightarrow page 26
DisF	User interface	5.808		\rightarrow page 26
Hux	Additional function	5.900	... 5.994	\rightarrow page 27

The main configuration groups are structured in a hierarchical order, whereby determination of a dialogue for prompting only the really relevant configurations is possible.

ENGINEERING TOOL 'ET/KS 94'

Engineering Tool ET/KS94 permits realization of all operations which are possible via the KS94 front panel on a PC, whereby controller configuration and parameter setting are facilitated considerably. The engineering tool offers the following functions:

Creation and modification of the parameter set
Transmission of a parameter set to KS94
Read-out of a parameter set from a KS94
Long-term storage of various parameter sets on hard disk or floppy
Display of operating data
Connection of PC and KS94 controller is via an RS232/TTL adaptor cable, which must be ordered separately (ordering information \rightarrow see page 43 section 12). In conjunction with the 'SIM/KS 94' controller simulation, a graphic trend display of the real process data is available!

Configuration

Fig.: 1 Survey of configuration

Fig.: 2 Survey of configuration

Configuration

10.4. CONTR: Controller

This main group determines the controller structure and function, which is used as starting point for controller configuration for a particular application. The main controller configuration [. 10. leads to
 checked before commissioning and corrected, if necessary. After determination of this word, no further settings are required for a large number of applications. Additional function adaptions are possible via configuration words $[185$ and the following configurations.

Main controller configuration 1:

CFInc: (Control behaviour)	ㄷTヨㅂ․․ (Controller type)	WFLnc (Set-point function)
00: signaller 1 output	0 : standard controller	0: set-point
01: signaller 2 outputs	1: ratio controller	1: set-point / cascade
02: 2-pnt.controller	$(\rightarrow$ [.107)	2: programmer
03:3-pnt.controller (heating switching and cooling switching)	2: 3-element controller	3: set-point with ext. offset
04: 3-pnt.controller (heating continuous and cooling switching)	3: mean value	4: set-point / cascade with
05: 3-pnt.controller (heating switching and cooling continuous)	$\mathrm{x}_{\text {eff }}=(1-b) \cdot \mathrm{x} 1+\mathrm{b} \cdot \mathrm{x} 2$	5. internal offset
$06: \Delta / \mathrm{Y} \text {-off }$		5: set-point / cascade with external offset
08: 3-pnt.stepping with Yp (INP6)		6: programmer with internal
09: continuous with position controller		offset
10: continuous		7: programmer with external
12: continuous with current feedback via Yp (INP6)		offset

[17 Cons I. I. I. B Reqlerh	Main controller	configuration 2:
다낭․ (Output action)	$\begin{gathered} \text { EDiff } \\ \text { (Differentiation) } \end{gathered}$	CFail (Controller behaviour with main variable sensor break)
0 : inverse	0: differentiate Xw	```0: neutral (controller outputs switched off) Ypid \(=Y \min (0)\) Ypid \(=Y \max (100)\) Ypid = Y2 (adjustment via front panel not possible) 4: Ypid = Y2 (adjustment via front panel possible)```
1: direct	1: differentiate X	

Configuration

Set-point functions:
(only with Wext)

WTr:act (Behaviour of Wint when switching over from Wext to Wint with the w tracking input switched on)	省 (Type of set-point tracking.)
0: Set-point tracking 1: Process value tracking	0 : additive 1: factor

E. 177 Ratio functions: (only with ratio controller) cons 1. 1.2	
Ratio (Ratio control function)	XDF (Process value decimal point)
$\begin{aligned} & \text { 1: }(\mathrm{x} 1+\mathrm{N} 0) / \mathrm{x} 2 \\ & 2:(\mathrm{x} 1+\mathrm{N} 0) /(\mathrm{x} 1+\mathrm{x} 2) \\ & 3:(\mathrm{x} 2-\mathrm{x} 1+\mathrm{N} 0) / \mathrm{x} 2 \end{aligned}$	0: no digit behind decimal point 1: 1 digit behind decimal point 2: 2 digits behind decimal point 3: 3 digits behind decimal point

Configuration

Span start X0：（only with ratio controller）
Xmin：（min．process value limiting Xmin）
Numeric value：－999 ．．． 9999

Span end X100：（only with ratio controller）
Xmax：（max．process value limiting Xmax）
Numeric value：－999 ．．． 9999
and Xmin Xmax
Factor for stoichiometric ratio s：（only with ratio controller）
S：stoichiometric ratio
Numeric value：00．00 ．．． 99.99 （2 fixed digits behind decimal point）

Programmer configuration：
（only with programmer configured）

P＇S®1 （Source for program selection）	F wrole （Behaviour with mains recoverv）	FEnd （Behaviour with program end）	FSt．rt． （Source for Run／Stop）
0 ：program selection via operation 1：program selection via control input	0：continue program 1：stop program and switch over to Wint 2：continue program after automatic research	0 ：continue with following program 1：following program and reset（start required）	0 ：start／stop and reset together＊． control with int／ext （without Option B） 1：start／stop and reset separate． （Option B）
	3：continue program after successful automatic research otherwise switch over to Wint 4：continue program at the time mark of mains recovery		

＊L．190；SWi／e select the source for int／ext－switching．

10．5．SOURCE：Input signal allocation

Input signal allocation is dependent of main controller configuration＇L．A In＇．this proposal must always be checked before commissioning and corrected，if necessary．Therefore，input signal allocation＇SOURCE＇is no independent main item and considered as additional configuration of

5×2（Signal source for X 2 with ratio）	SWext． （Signal source for Wext with controller with external set－point）	5 析 （Signal source for W with controller with set－point offset	52 （Signal source for auxiliary variable）
0：X2 switched off 1：X2 of INP5	0 ：Wext switched off 1：Wext of INP5 2：Wext of INP6	0 ：dW switched off 1：dW of INP5 2：dW of INP6	0：z switched off 2：z of INP6

Configuration

$\begin{gathered} \text { SWi Se } \\ \text { (Set-point switch-over } \\ \text { from internal to } \\ \text { external) }^{1)} \end{gathered}$	STrac (Bumpless switch-over to int. set-point with int./ext. switch-over)	Sodun (Effective set-point offset)	$5 w / 2$ (Switch-over to set-point w2)
0 : only internal set-point 1: W/Wext via front 2: dil=external set-point 3: di2=external set-point 4: dil = internal set-point 5: di2 $=$ internal set-point	0: no tracking ${ }^{2}$ 1: tracking on 2: di2 = tracking on 4: di2 = tracking off	$\begin{aligned} & \text { 0: } \left.\text { no offset }^{2}\right)^{2} \\ & \text { 1: offset on } \\ & \text { 2: di1 = offset on } \\ & \text { 3: di2 =ofset on } \\ & \text { 5: di1 =ofset off } \\ & \text { 6: di2 }=\text { offset off } \end{aligned}$	

$\begin{gathered} \mathrm{S} \mathrm{~A} / \mathrm{M} \\ \text { (Automatic / manual } \\ \text { (manual switch-over) } \end{gathered}$	SPI F F (feedback off, otherwise PI / P switch-over)	$\begin{gathered} 5 y 2 \mathrm{or} \\ \text { (Output of safe } \\ \text { correcting value) } \\ \hline \end{gathered}$	SCoff (Switch-off controller)
0: auto/manual via front	0: PI fixed ${ }^{2)}$	0: Y no Y2) ${ }^{2}$	0: controller on/off via
1: fixed to manual	1: fixed to P action	1: fixed to Y2	front ($\mathrm{W}=$ = $----{ }^{\text {- }}$)
2: dil = manual	2: dil $=\mathrm{P}$ action	2: $\operatorname{dil}=\mathrm{Y} 2$	1: controller fixed to off
3: di2 = manual	3: di2 $=$ P action	3: $\mathrm{di} 2=\mathrm{Y} 2$	2: dil $=$ controller off
4: Backup run	4: dil = PIaction	4: timer $=\mathrm{Y} 2$	3: di2 = controller off
5: dil = auto	5: di2 = PI action	5: $\mathrm{dil}=\mathrm{Y}$	4: timer= controller off
6: di2 = auto		6: di2 $=\mathrm{Y}$	5: dil = controller on 6: di2= controller on

Allocation of digital signals for the programmer:
(only with programmer configured)
Allocation of digital signals for the controller functions:
\square SPrSt.
(Signal source for programmer run/stop)
0: Run/Stop: Front
1: Run/Stop: di4
2: Run/Stop: di4 and timer 1

[^0]
Configuration

10.6. INPUT: inputs

The signal inputs for the previously selected controller configuration are determined in this main group. The signal inputs required for the selected controller function are displayed in the Configurationmenu. As during control function configuration, a large number of applications can also be covered by determining the main configuration. At the second level, special cases can be matched and adjusted by additional, optional configuration. Signal inputs INP1, INP5 and INP6 are provided with KS92. All analog inputs (wether used for controlling or not) can be used for supervising (e.g. alarmprocessing)

10.6.1 Signal input 1 / INP1 (main variable $x 1$)

Configuration is for main variable x . This signal input is a universal input for which extensive functions can be configured.

Main configuration:

The main configuration word is used for determination of input sensor type and physical unit. Additional input configurations can be determined using the additional configuration.

		Unit (Unit)*	DF (Number of decimals)
Thermocouple: 00 : Type L $0 \ldots 900^{\circ} \mathrm{C}$ 01: Type J $0 \ldots 900^{\circ} \mathrm{C}$ 02: Type K $0 \ldots 1350^{\circ} \mathrm{C}$ 03: Type N $0 \ldots 1300^{\circ} \mathrm{C}$ 04: Type S $0 \ldots 1760^{\circ} \mathrm{C}$ 05: Type R $0 \ldots 1760^{\circ} \mathrm{C}$ 06: Type T $0 \ldots . .400^{\circ} \mathrm{C}$ 07: Type W $0 . . .2300^{\circ} \mathrm{C}$ 08: Type E $0 \ldots 1000^{\circ} \mathrm{C}$ 09: Type B (0) $400 \ldots$ $1820^{\circ} \mathrm{C}$	Resistance thermometer: 20: Pt $100-99.9 \ldots 850.0^{\circ} \mathrm{C}$ 21:Pt $100-99.9 \ldots 250.0^{\circ} \mathrm{C}$ $25: 2 \times$ Pt $100-99.9 \ldots 850.0^{\circ} \mathrm{C}$ $26: 2$ x Pt $100-99.9 \ldots 250.0^{\circ} \mathrm{C}$ Standard signals: 30: $0 \ldots 20 \mathrm{~mA}$ 31: 4 ... 20 mA 32:0 ... 10 V 33: $2 \ldots 10 \mathrm{~V}$ Potentiometric transducer: 40: $0 \ldots 500$ Ohm	$\begin{aligned} & \text { 0: at T’IF } 30 \ldots 40 \\ & \text { 1: }{ }^{\circ} \mathrm{C} \\ & \text { 2: }{ }^{\circ} \mathrm{F} \end{aligned}$	0: no decimal point 1: 1 digit behind the decimal point 2: 2 digits behind the decimal point 3: 3 digits behind decimal point only with type: 20 ... 40

* Unit settings for scaling of $T^{\prime}=1 F \cdot 00 \ldots 26$. With T' $\exists \mathrm{F} \cdot 30 \ldots 40$ the value is fixed to 0 . For this case the unit to be displayed will be configured by 5.8 at .
Fhusik. Wert ar
$\mathbf{x 0}$:
(physical value at 0\%)
numeric value -999 ... 9999
select only with type $=30$... 40
[. 2 BP
x100 1919
Fhusik. Wert 100%
x100:
(physical value at 100\%)
numeric value -999 ... $9999, \mathrm{X} 0 \neq \mathrm{X} 100$!
select only with type $=30 \ldots 40$

Configuration

Tkref:

(external TC)
numeric value:- $-99 \ldots 100^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
select only with type: $00 \ldots 08$ and $\mathrm{STk}=2$

XFail:

(substitute value with sensor error)
numeric value: -999 ... 9999

$$
\rightarrow+0
$$

Tfm:

(filter time constant for input value processing) numeric value: 0.0 ... 999.9

Optional configuration 1:

The optional configuration can be used to determine the functions for two signal pre-processing levels.

Func 1 , Funce (Function selection for signal pre-processing)	LDF (decimal point for gain, Xeff and yki)
0 : no function, signal is output directly 1: scaling (parameters: m, b) 2: linearization (segment points xs1,ys1 ...) 3: filter (parameter: Tf) 4: square root extraction with factor (parameter:gain)	0: no decimal point 1: 1 digit behind the decimal point 2: 2 digits behind the decimal point 3: 3 digits behind decimal point

Configuration

The configuration parameters for linearization are stored as follows.

xs 1	3	
$x=2$	[.225 $\because=2$	2
E.225 x	[.2] ${ }^{\text {P }}$ [ES	ue pair 3
28×1	[.239	value pair 4
[.23] x $=5$	[.] 3 ' \because ES	value pair 5
232×56	[.23]	value pair 6
[.234 xE7	[.235	value pair 7
	[. 2371788	value pair 8

Note that the input values (x-values) must be entered in ascending order. (xs1<xs2<xs3...)

The range for these configuration words is between -999 and 9999 or ${ }^{\text {'----' ((switched off)! }}$
For limiting the number of parameters, these functions can be used only once during pre-processing levels 1 or 2! Linearization segment points which are not required can be switched off by setting ‘----'.

10.6.2 Signal input 5 / INP5 (ratio variable x2, ext. set-point Wext)

The signal for ratio variable x 2 or external set-point Wext is configured with option p.c.b. not fitted in the controller and the function selected during controller configuration. The configuration words for INP5 are explained in section (see following table).

Main configuration 5.48 B	see [.TME	only $0 / 4 \ldots 20 \mathrm{~mA}$ and $0 / 2 . . .10 \mathrm{~V}$ (type: $30 . . .33$)
X0 4 .47	E.27	
X100E.482	" E.2日E	
Additional configurationE.405	" 0.205	only ${ }^{\text {Faial }}$ '
XFailE. 43	2.213	
TfmE.4 4	E.2 14	
Optional configuration 12.43]	E.23]	without linearization (Func1/2: 2)

10.6.3 Signal input 6 / INP6 (auxiliary variable yp, feedback yp)

The signal for the auxiliary variable yp or for the position feedback is configured, if this was selected during controller configuration.
The configuration words for INP6 are explained in section (see following table).

Configuration

10.7. OUTPT: outputs

10.7.1 Signal output 1 / OUT1

The output for controller correcting variable y 1 is configured. This signal output is a universal output which can be configured for extensive functions.		
Sro (Signal source)	Teyfe (Output stage)	Mode (Motor actuator output action)
00: output switched of 01: controller output $\mathrm{Y} 1 /$ Yout 1 02: controller output Y2/Yout2 03: output Ypid 04: position feedback Yp 05: controlling deviation Xw 10: process value Xeff 11: X1 12: X2 20: set-point W 21: external set-point Wext 22: external offset dWe 23: set-point Weff 24: programmer set-point Wprg 25: alarm 1 (limit1) 26: alarm 2 (limit2) 27: alarm3 (limit3) 28: alarm 1 (limit4)	0 : relay (switching) 1: $0 \ldots 20 \mathrm{~mA}$ (continuous output) 2: $4 \ldots 20 \mathrm{~mA}$ (continuous output) 3: $0 / 20 \mathrm{~mA}$ (logic)	0: not selectable 1: direct / normally open 2: inverse / normally closed

Additional configuration Out1:

Via the options configuration, the functionality for a signal post-processing stage can be determined.
This configuration word is displayed only with the option enabled.

Func: (Function selection for signal output processing)	DF (decimal point for $\mathrm{xsi}, \mathrm{x} 0, \mathrm{x} 100$)
0 : no function, signal is output without change ($0 \% \ldots .100 \%$)	0: no decimal point 1: 1 digit behind decimal point
1: scaling (reference values 5.5 is and 5.5 i are effective)	2: 2 digits behind decimal point 3: 3 digits behind decimal point

X0:
(physical value at 0%)
Numeric value -999 ... 9999
x 100 :
(physical value at 0\%)
Numeric value -999 ... 9999

Configuration

10.7.2 Signal output $2 /$ OUT2

Used for configuring the source of output OUT2. This signal output is a universal output and can be configured for extensive functions.

	TヨF: (Output stage)	Mode (Motor actuator output action)
00: output switched off 01: controller output Y1/Yout1 02: controller output Y2/Yout2 25: alarm1 (limit1) 26: alarm2 (limit2) 27: alarm3 (limit3) 28: alarm4 (limit4)	0: relay (switching)	0 : not selectable 1: direct / normally open 2: inverse / normally closed

10.7.3 Signal output 4 / OUT4

Used for configuring the source of output OUT4. This signal output can be $[.597$ configured for extensive functions.		
Src (Signal source)	Ture (Output stage)	"dodr (Actuator output action)
00: output switched off 01: controller output Y1/Yout1 02: controller output Y2/Yout2 25: alarm 1 (limit1) 26: alarm 2 (limit2) 27: alarm 3 (limit3) 28: alarm 4 (limit4) 29: programmer output 1 30: programmer output 2 31: programmer output 3 32: programmer output 4 33: program end	0 : relay (switching)	0 : not selectable 1: direct / normally open 2: inverse / normally closed

Configuration

10.7.4 Signal output 5 / OUT5

Here the source for output 5 is configured for programmer/alarm. This signal output can be configured for extensive functions. Main configuration:		
Sros. (Signal source)	Terfe (Output stage)	Mode (Actuator output action)
00: output switched off 30: programmer output 2 01: controller output Y1/Yout1 31: programmer output 3 02: controller output Y2/Yout2 32: programmer output 4 25: alarm 1 (limit1) 33: program end 26: alarm 2 (limit2) 27: alarm 3 (limit3) 28: alarm 4 (limit4) 29: programmer output 1	0 : relay (switching)	0 : not selectable 1: direct / normally open 2: i nverse / normally closed

10.8. ALARM: alarms

10.8.1 Alarm 1 / (limit 1)

The function for alarm 1, (output via output OUT 4) is configured.

Main configuration:

	Sro signal source)	Fric (Alarm function)	DF: (Decimals for alarm limits)
00: no source 01: Xeff 02: $X w^{*}$ 03: $x 1$ 04: x 2 06: auxiliary variable z 07: Wext 08: $\Delta \mathrm{w}$ 09: Weff 10: Yp	11: Ypid 13: WMIN/MAX (Wsel) 14: INP1 18: INP5 19: INP6 20: program time (net) 21: program time (gross) 22: program rest time 24: faulty actor	0: no alarm (don't care) sensor fail 2: sensor fail or measurement value alarm 3: sensor fail or measurement value alarm with suppression with set-point switch-over or start-up 4: measurement value alarm 5: measurement value alarm with suppression with set-point change or start-up	0: no decimal point 1: 1 digit behind the decimal point 2: 2 digits behind the decimal point 3: 3 digits behind the decimal point

[^1]
Configuration

10.8.2 Alarm 2 (limit 2)

The function for alarm 2 (output via OUT 5) is configured.

10.8.3 Alarm 3 (limit 3)

The function for alarm 3 (output via OUT 1) is configured. Main configuration 54 see 5.54π
Selection is possible with OUT1 configured as alarm output.

10.8.4 Alarm 4 (limit 4)

The function for alarm 4 (output via OUT 2) is configured.

Selection is possible only with OUT2 configured as alarm output

10.9. TUNE:self-tuning

2.785	The type of controller self-tuning and the type of controlled self-tuning can be adjusted! Main configuration:		
Konfis. Thning			
메어을 (Controller self-tumino)	OCOMC - (Process-at-rest mode)	OCht.r. (Controlled self-tuning mode) noeffect with KS92	ODF (Decimals for
0: Standard	$0:$ grad $=0$ 1: $\operatorname{grad}<0$ with inverse controller or $\operatorname{grad}>0$ with direct controller 2: $\operatorname{grad} \neq 0$	0: no function selectable control / disturbance behaviour switch-over via operation switch-over via control input switch-over controlled by Weff switch-over controlled by Xeff switch-over controlled by Ypid 7: switch-over controlled by X-W	0: no decimal point 1: 1 digit behind the decimal point 2: 2 digits behind the decimal point 3: 3 digits behind the decimal point

10.10. DISP: User interface for operation

Configuration

10.11. Additional functions

The interface function and operating frequency for suppression of interference on inputs are configured.
10.11.1COM (serial interface)

\%.979	
COM	7. 3.8
	tstele

Mainconfiguration:
(IS01745, PROFIBUS)
Only with HW option B
B.
(Baud rate)
00: not adjustable
01: 2400 Bd
02: 4800 Bd
03:9600 Bd 04:19200 Bd

Fidrar
(Interface address)
ISO1745
0 ... 99 (default 0)

10.11.2Hardware

10.11.3Hard-/Software Codenumber

The following configuration dates are not changeable. They show the hardware version (5.99 iu [.993) and the software version (5.993 u. 2.994) of the instrument.

Example: 940792331201

Example:4012 $157 \mathbf{2 5 3 2 0}$

Configuration

Bloc		
9407-901-xxxxx	D	$\begin{aligned} & 6.5905=25 \text { (alarm 1) } \\ & 6.59 \text { (GrG}=26 \text { (arm 2) } \end{aligned}$
INP6		5.50 c Sr\% $=02(\mathrm{xw}-\mathrm{a}$
® out5	T Pr	[.550 Sro = 03 (process val
		[.545 Srco 03 (process value x1)
Continuous controller, 1 xw-alarm, 2 process value alarme	$5.530-r=28($ alarm 4)	
9407-901-xxxxx	$\begin{aligned} & =02 \text { (2-pnt.controller) } \\ & =0 \text { (standard controller) } \end{aligned}$	559: $\%$ ce $=26$ (arm $)$
		[55a Sro = 03 (process value x1) [.540 Sro = 03 (process valuex1)
INP5	WFUnc: $=0,1,4$ or 5	
Two-point controller + 2 process value alarms		
9407-901-xxxxx	$\begin{aligned} & \mathrm{FF}=03 \text { (3-pnt.stepping) } \\ & \mathrm{CT}=\mathrm{FF} \quad 0 \text { (standard controller) } \end{aligned}$	[.5315ros 26 (alarm 2)
		[.530 Sro $=03$ (process
	WFThice $=0,1,4$ or 5	
Out5	E.20] T'EF = sensor type	
Three-point stepping controller + Process value alarm	Srose $=01$ (controller output yl)	
	$0.590-5 \% 02($ controller output y 2)	
9407-901-xxxxx		rs 315
		5.590 Sro $=25$
		5.59 - Srose 26 (alarm 2)
		[500 Src = 02 (xw-alarm)
	C.EDE T'EF = sensor type	[.550 Sro $=01$ (xeff)
Ratio controller (continuous) 1 xw alarm, 2 process value alarms	2.500 Sro = 01(controller output yl)	E.540 Sro = 03 (process value x1)
$9407-901-1 \times 2 \times x$		
	$=1$ (standard contr	
$\operatorname{lin}_{\text {NP5 }}^{\text {Na }}$	WFAric $=3$ (mean value $)$	
	$\begin{array}{ll} 2.192 \mathrm{SPr} & =1 \text { (di4) } \\ 2.20 \mathrm{~T} & =\text { sensor type } \\ 2.505 \mathrm{Sr} & =01 \text { (controller output } \mathrm{y} 1) \end{array}$	
Programmer (continuous) 1 xw alarm		

11. Parameters

11.1. General

This section gives a survey of the KS92/94 parameter data and general hints for parameter handling. The parameter operation and effect on the controller operation are described with the operating principle.
The parameter setting dialogue is realized via selector key \square and 'increment' / 'decrement' keys $\Delta \boldsymbol{\nabla}$, like at the other operating levels:

- Press the selector key to select menu items / input values within one level and to change to the next higher level.
- Press the 'increment' / 'decrement' keys to return to a lower level or to change input values.

The controller parameter structure is given on the following page. All parameters are listed.
Parameters which are not relevant for a function (configuration-dependent) are not displayed!
A selection menu can be displayed anywhere at parameter level by pressing key $\square>3 \mathrm{~s}$.
Erio: \quad return to parameter level
Mar-k: mark the selected parameter for display at 'extended' configuration level.
Exit: return to operating level.

Corff: transition to configuration level.

11.1.1 Allocation of parameters to the 'extended operating level'

Up to 12 parameters can be allocated to the 'extended operating level' (see Fig.3:), whereby the controller operation is simplified, since changing over to parameter level whenever one of these parameters must be changed is omitted.
Allocation: select required parameter, press 'selection' key during >3s (F':ar・ヨ blinks) Select Mark with 'up' key $\boldsymbol{\Delta}$ and acknowledge with 'selection' key \square (see Fig.3:).
Delete: select the required parameter at the extended operating level, press 'selection' key during >3 s ($\mathrm{P} \cdot \mathrm{ar} \cdot \boldsymbol{\exists}$ blinks) and acknowledge with 'up' key $\boldsymbol{\Delta}$.
Select [1E.ar' and acknowledge with 'selection' key Q (see Fig.4:).
Hold: The Hold function can be used for selecting a parameter from the extended operating level for being visible continuously. For this, select the required parameter at the extended operating level, press ‘selection' key \square during >3s (F'ar・ヨ blinks) select

Fig.: 3 Marking a parameter

Fig.: 4 Deleting a parameter

Extended oper. level

Hold with 'up' key $\boldsymbol{\Delta}$ and confirm with 'selection' key \square (see Fig.4:).

Applications:

- During optimization, frequent access to defined parameters ($\mathrm{Xp} 1, \mathrm{Xp} 2, \mathrm{Tn}$ and Tv) is required.
- During commissioning, limit value ($\mathrm{LimH} 1, \mathrm{LimH} 2, \ldots$) or measurement value corrections must be changed frequently.
- With the parameter level disabled, access to the selected parameters is possible for the operator. Deleting a parameter from the 'extended operating level' must be done at this level (see Fig.4:)

Parameters

Fig.: 3 Survey parameters KS 92
Selection menus
KS 92 parameters

11.2. Set-point function

Text 1	Description	Range	Default
SにtFt.	Set-point parameter		
LC+	Band width upper limit	0... 9999	'-----' (switched off)
LC-	Band width lower limit	0... 9999	'----' (switched off)
W6]	lower set-point limit for Weff	-999 ... 9999	0
W106	upper setpoint limit for Weff	-999 ... 9999	1350
W2	additional set-point	-999 ... 9999	100
Grow+	set-point gradient plus with W[w/min]	0.01 ... 99.99	'----') (switched off)
Trow-	set-point gradient minus with W[w/min]	0.01 ... 99.99	'----' (switched off)
Frowz	set-point gradient with W2[w/min]	0.01 ... 99.99	'-----' (switched off)

11.3. Time function

Text 1	Descrintion	Range
	Timer-parameters	
TS.Y	Start value: Year	0... 255
TS. MD	Start value: Month and day	Month:1...12; Day: 1... 31
TS. Hld	Start value: Hour and minutes	Hour:0...23; Minutes: 0... 59
TE.Y	Final value: Year	0... 255
TE. MD	Final value: Month and day	Month:1...12; Day: 1... 31
TE. HM	Final value: Hour and minutes	Hour:0...23; Minutes: 0... 59

11.4. Programmer functions

RECF1 Programmer recipe 1

Analog				Digital			
Text 1	Description	Range	Def.	Text 1	Description	Range	Def.
Wrove	Change mode	0: Ramp	0		Reset value control output 1..4	0000..1111	0000
		1: Step 2: Ramp with time priority		T-1	Time segment 1	0...9999[min]	0
Probe	Preset mode	0 : Segment start 1: Program time	0	D1	control output 1..4 for segm. 1	0000...1111	0000
				- -			
Fraext	Successive program	$1 . .3$ or '	1	Td20	Time segment 20	0...9999[min]	0
L--	Band width lower limit	0... 9999	'----'	D20	control output 1..4 for segm. 20	0000..1111	0000
LE+	Band width upper limit	0... 9999	'----'				
WFIT	Reset value W0	-999... 9999	0				
TF'1	Time segment 1	0...9999 [min]	0				
WF'1	Set-point segment 1	-999... 9999	0				
TF20							
TF20	Time segment 20	0...9999 [min]	0				
WF2E	Set-point segment 20	-999... 9999	0				

Parameters

11.5. Alarm function

Text 1	Description	Range	Default
LIFI	Alarm 1		
LimL1	Low limit	-999 ... 9999	'-----' (switched off)
LimH1	High limit	-999 ... 9999	'-----' (switched off)
LxSd	Switching difference	-999 ... 9999	0
LIF2	Alarm 2		
LimL2	Low limit	-999 ... 9999	'-----' (switched off)
LimH2	High limit	-999 ... 9999	'-----' (switched off)
LxSd2	Switching difference	-999 ... 9999	0
LITE	Alarm 3		
LimLS	Low limit	-999 ... 9999	'-----' (switched off)
LimHS	High limit	-999 ... 9999	'-----' (switched off)
LxSES	Switching difference	-999 ... 9999	0
LIT4	Alarm 4		
LimL4	Low limit	-999 ... 9999	'-----' (switched off)
LimH4	High limit	-999 ... 9999	'----' (switched off)
Lxsd4	Switching difference	-999 ... 9999	0

11.6. Self-tuning

Text 1	Description	R/W/Range		Default
	Optimization			
YOF.t.m	Correcting variable whilst process at rest	R/W	-105 ... 105	0
GYoFt	Step width during identification	R/W	5... 100	100
ORES 1	Self-tuning result during heating	R	```0 : No test (or cancelled during test) Cancellation (wrong output action) Finished (successful optimization; reversal point found) Cancellation (process does not react or is too slow) : Cancellation (reversal point found; estimation unsafe) 5: Cancellation (reversal point not found; estimation unsafe) 6: Finished (optimization cancelled due to exceeded set-point risk; reversal point not reached so far; estimation unsafe) 7: Cancellation (correcting variable too low \(\Delta \mathrm{Y}<5 \%\)) 8: Cancellation (set-point reserve too low)```	
DRes2	Self-tuning result during cooling	R	$0 \ldots 8$ (see ORes 1)	
T-1	Delay time heating	R	000,0 ... 999,9 s	
	Vmax heating	R	000,0 ... 999,9 /s	
KF1	Process amplification heating	R	000,0 ... 999,9	
T-12	Delay time cooling	R	000,0 ... 999,9 s	
$0 \mathrm{~m} \cdot \mathrm{E} \times 2$	Vmax cooling	R	000,0 ... 999,9 /s	
KF2	Process amplification cooling	R	000,0 ... 999,9	

11.7. Control algorithm

Text 1	Description	Range	Default
CF'ar:	Controller parameters		
D.E.	Digital Actor Control DAC ${ }^{\text {® }}$	$0=0 \mathrm{ff} / 1=$ on	0
TFuls	Min. pulse length	0.1...999.9 s	0.3
TM	Actuator response time	$10 \ldots 9999 \mathrm{~s}$	30
Y2	Additional correcting value	-105 ... 105%	0
Ymir	Min. correcting variable limiting	-105... 105%	0
Ymax	Max. correcting variable limiting	-105... 105%	100
Y6	Correcting variable working point	-105 ... 105%	0
$\mathrm{x}=02$	Switching difference of additional contact	0.1 ... 999.9 \%	1
LW	Trigger point separation of additional contact	-999 ... 9999	0
X Ec 1	Switching difference of signaller	0.1 ... 999.9 \%	1
$x \leq 12$	Neutral zone ($\mathrm{Xw}>0$)	0.0 ... 999.9 \%	0
xsla	Neutral zone (Xw < 0)	0.0 ... 999.9 \%	0
Xerion	Neutral zone	0.2 ... 999.9 \%	0.2
F'ar'am	Parameter set 0		
XF1	Proportional band 1	0.1 ... 999.9 \%	10
\%F2	Proportional band 2	0.1 ... 999.9 \%	10
Tri	Integral action time	0 ... 9999 s	180
T01	Derivative action time (parameter set 1)	0 ... 9999 s	10
T1	Min. cycle time (parameter set 1)	$0.4 \ldots 999.9 \mathrm{~s}$	10
T2	Min. cycle time (parameter set 2)	0.4 ... 999.9 s	5
REOOV	Rapid Recovery (with controller "on" ; D. 191; SCoff)		
KWorly	X-W limit value for Y tracking	0 ... 9999*	'----'
XWortx	X-W limit value for X tracking	0 ... 9999*	'----'
Growor	set-point gradient with X tracking active	0,01 ...99,99 /min	'----'

11.8. Input processing

11.8.1 Process value handling

Text 1	Description	Range	Default
I Etul			
Tiコ	Differentiation time constant for z	$0 \ldots 9999$ s	10
$1 \cdot 15$	Zero offset / ratio	-999 ... 9999	0
\square	Factor a / 3-element control	-999 ... 9999	1
\square	Factor b/mean value control	-999 ... 9999	0.5

11.8.2 Signal pre-processing

Text 1	Description	Range	Default
INF' 1	Signal processing for INP1		
X1in	Measurement value correction	-999... 9999	0
X1out.	Measurement value correction	-999... 9999	
X2in	Meaurement value correction	-999... 9999	100
\%2out.	Measurement value correction	-999... 9999	100
${ }^{\text {m }}$	Scaling: gradient m	-9.99... 99.99	1
\square	Scaling: offset b	-99.9 ... 999.9	0
- 9 ¢	Square root extraction: gain	0 ... 9.999	1

Tf	Filter：filter time constant	0 ．．． 999.9 s	0.5
INP「	Signal processing for INP5		
mis	Scaling：gradient m	－9．99 ．．． 99.99	1
6.5	Scaling：offset b	－99．9 ．．． 99.99	0
ヨヨiに5	Square root extraction：gain	0 ．．． 9.999	1
Tf5	Filter：filter time constant	0 ．．． 999.9 s	0.5
ITFF＇G	Signal processing for INP6		
P6	Scaling：gradient m	－9．99 ．．． 99.99	1
b6	Scaling：offset b	－99．9 ．．． 999.9	0
9．ainc	Square root extraction：gain	0 ．．． 9.999	1
Tf6	Filter：filter time constant	0 ．．． 999.9 s	0.5

11．9．Miscellaneous

Text 1	Description		Range				Def．
HıEX	General						
Fkey	Function of front panel key 芧．$^{\text {a }}$		$\begin{aligned} & \text { 0: no function } \\ & \text { 1: automatic / manual } \\ & \text { 2: Wext / Wint } \end{aligned}$				1
Blck 1	EBlos	extended operating level	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	HEloc．	auto／man－key	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	CBlos	controller off	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	WE100	setpoint	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
Blck2	PBlos	programmer preset	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	REloct	programmer run／stop／reset	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0
	OElos	selftuning	0 ：free	1：blocked	2：blocked by dil	3：blocked by di2	0

11．10．Signals

Signl	Description
Set．Ft	Setpoint signals
Wint．	Internal set－point
Wext．	External set－point
cluext	External correction
dut	Set－point offset
Wsel	Min／max set－point
Diontre	Controller signals
Y	Correcting value
YF	Position feedback
XW	Control deviation
$\times 1$	Main input x 1
$\times 2$	Auxillary input x 2
OUL	External correcting variable limiting
xeff	Effectiv process value

Irifut．	Input signals
IFPF1	Input 1
IHF＇1r＊	Raw measure 1
－：	
IHFE	Input 6
INF＇Gr＊	Raw measure 6
Pros	Programmer signals
WF	Programmer setpoint
t．Br－ut	Brutto time（inc．all pause times）
t小et	Netto time（without pause times）
tRest	Rest time
FFlr＊	Programmer no．
C100k	Current time

11.11. Input and output allocation with pre-configured units

The signal (e.g. X1, Y1, alarms) allocation to the inputs and outputs for the relevant pre-configuration (factory setting) is given in the following table. Allocation can be altered at any time via front panel or interface and should be corrected before commissioning, if necessary.

	Order numbers and functions for pre-configured units					
Inputs	X1					
INP1						
INP5	X2; Wext; Wd				Wext	X2; Wext; Wd
INP6	Hilfsgröße 'Z'					
dil	W/Wext					
di2	Auto/man					
di3	Local / remote					
di4	Programmer start/stop					
di5	Programmer reset					
Outputs						
OUT1	Y1			-	Y1	
OUT2	-	-	Y2	Y1	-	Y2
OUT4	Alarm1			Y2	Alarm1	
OUT5	Alarm2					
dol	Programmer output 1					
do2	Programmer output 2					
d03	Programmer output 3					
do4	Programmer output 4					

12. Versions

[^0]: 1) With the programmer configured, switch-over is between internal and external program set-point.
 2) Can be switched over via interfaces (e.g. engineering tool; operating data)
[^1]: *Limit comparator, all other versions are fitted with limit contact.

