Universal process-controller and programmer KS 90-1 \& KS 92-1

Explanation of symbols:

General information

General warning

Caution: ESD-sensitive components

MODBUS ${ }^{\circledR}$
is a registered trademark of the MODBUS-IDA Organization
BluePort and BlueControl
are registered trademarks of PMA Prozeß- und Maschinen-Automation GmbH

© 2004-2005 PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany • All rights reserved • Without prior written consent, reprinting or photocopying of this document, entirely or in part, is prohibited.

This is a publication of
PMA Prozeß- und Maschinen Automation
P.O. Box 310229

D-34058 Kassel
Germany

Content

1. General 5
1.1 References 5
2. Commissioning the interface 6
2.1 Mounting hints 6
2.2 Electrical connections 6
2.2.1 RS 485 version (two-wire) 7
2.2.2 RS 422 version (four-wire - RS 485) 9
2.2.3 Cable installation 11
2.2.4 Screening 11
2.2.5 Terminating resistors 11
2.2.6 Installation notes 13
2.3 Bus settings 13
2.3.1 Bus address 13
2.3.2 Transmission parameters 13
2.4 Master operation (MASt) 14
2.5 System layout 15
2.5.1 Minimum configuration of a MODBUS installation 15
2.5.2 Maximum configuration of a MODBUS installation 15
2.5.3 Wiring inside buildings 16
3. Bus protocol 17
3.1 Composition of a transmission byte. 17
3.2 General message frame
3.2.1 CRC 18
3.2.2 End of frame detection 18
3.3 Transmission principles 18
3.4 Response delay (dELY) 18
3.5 Modem operation (C.dEL) 18
3.6 Function codes 19
3.6.1 Reading several values 19
3.6.2 Writing a single value 20
3.7 Writing several values 21
3.8 Error record 22
3.8.1 Error codes 22
3.9 Diagnosis 23
3.9.1 Return transmission of the received message (0x00) 24
3.9.2 Restart of communication (terminates the Listen Only mode) (0x01) 24
3.9.3 Return transmission of the diagnosis register (0x02) 24
3.9.4 Change to the Listen Only mode (0x04) 24
3.9.5 Delete the counter and reset the diagnosis register ($0 \times 0 \mathrm{~A}$) 24
3.9.6 Return transmission of the message counter (OxOB) 25
3.9.7 Return transmission of the counter for faulty message transmissions 25
3.9.8 Return transmission of the counter for messages answered with error code2
3.9.9 Return transmission of the message counter for this slave 25
3.9.10 Return transmission of the counter for unanswered messages 25
3.9.11 Return transmission of the counter for messages answered with NAK 26
3.9.12 Return transmission of the counter for messages answered with Busy. 26
3.9.13 Return transmission of the parity error counter 26
3.9.14 Return transmission of the framing error counter 26
3.9.15 Return transmission of the counter for too long messages 26
4. MODBUS addresses, address areas, and address formats 27
4.1 27
4.2 Special values 27
4.3 Composition of the address tables 28
4.4 Internal data types 28
5. Index 29
6. Address tables 31
6.1 Notes to program addresses 31

1 General

We thank you for purchasing a device from the BluePort ${ }^{\circledR}$ product range. This document describes the implementation and operation of the MODBUS interface used with the universal process- controller and programmer KS 90-1 which will be called 'device' in the rest of this document. This document is also valid for the KS 92-1 and the KS 92-1 programmer.

Devices with a MODBUS interface permit the transmission of process data, parameters, and configuration data.
Electrical connections are made at the base of the device in the channel of the top-hat DIN rail. The serial communication interface provides a simple link to superordinate PLCs, visualization tools, etc.

An additional interface that is always fitted in the device's front panel is the BluePort ${ }^{\circledR}(\mathrm{PC})$ interface. This interface is not bussable, and serves for a direct connection with the BlueControl® software package that runs on a PC or laptop. Communication is done according to the master/slave principle. The device is always operated as a slave.

The most important characteristics and physical/electrical properties of the bus connection are:

- Network topology
linear bus, possible with bus termination at both ends (see below).
- Transmission media
screened and twisted 2-wire copper leads
- Lead lengths (without repeater)

A maximum lead length of 1000 m should not be exceeded.

- Transmission speeds

The following transmission speeds are supported:
$2400 \ldots 38400$ bits/s

- Physical interface

RS 485 with bus connections in the top-hat rail; connections made on site.

- Address range

1 ... 247
(32 devices in one segment. Expandable to 247 with repeaters.)

1.1
 References

Further information on the MODBUS-Protokoll:

[1] MODBUS Specifications

- MODBUS application Protocol Specification V1,1
- MODBUS over serial line specification and implementation guide V1.1
- http://www.modbus.org

Further information on RS 485:

[2] ANSI/TIA/EIA-485-A

Additional documentation for KS 90-1 / KS 92-1 devices:
[3] Universal process-controller and programmer KS 90-1 / KS 92-1

- Data sheet KS 90-1 / 92-1

949873740633

- Data sheet KS 90-1P / 92-1P 949873740733
- Operating instructions KS 90-1 / 92-1 949904062918
- Operating instructions KS 90-1P / 92-1P 949904066118

2 Commissioning the interface

Instrument field bus connection is via the pins of connector B on the rear, via flat-pin connectors or via screw terminals dependent on version.
Construction of suitable cables must be done by the user.

2.1

Mounting hints

If possible, the place of installation should be exempt of vibration, aggressive media (e.g. acid, lye), liquid, dust or aerosol.

The unit may be operated only in environments for which it is suitable due to its protection type.
The housing ventilation slots must not be covered.

In plants where transient voltage peaks are susceptible to occur, the instruments must be equipped with additional protective filters or voltage limiters!

Caution! The instrument contains electrostatically sensitive components.

Please, follow the instructions given in the safety hints.

Electrical connections
The electrical connection of the interface can be done as two-wire RS 485, as well as four-wire RS 485 (often called RS 422).

2.2.1 RS 485 version (two-wire)

The bus is build as RS 485 - two-wire cable with common ground main.
All the participants of an RS 485 bus are connected in parallel to the signals 'Data A' and 'Data B'.
The meaning of the data line terms are defined in the unit as follows:

- for signal 1 (off) Data A is positive to Data B
- for signal 0 (on) Data A is negative to Data B

The terms Data A and Data B are reverse to A und B defined in [2].

For the purpose of limiting ground current loops, signal ground (GND) can be grounded at one point via a resistor 'RGND' (100 ohms, ¼ watt).

Association of terms for the two-wire-MODBUS definition according to [1]

Definition MODBUS	according to unit
D1	Data A
D0	Data B
Common	RGND

Notes:
(1) Terminating resistors between Data A and B at the cable ends (see 2.2.3 below)
(2) Screening (see 2.2.2 below)
(3) GND lead (see Fig. 6)

| KS90-1 | | | IQT 150 | M-4 | ADAM-4520-D | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Signal | Terminal | Signal | Terminal | Signal | Terminal | Signal | Terminal |
| TXD-B | 15 | DATA-B | 3 | TXD-A | 3 | DATA - | |
| TXD-A | 17 | DATA-A | 8 | TXD-B | 4 | DATA+ | |
| GND | 13 | RGND | 5 | Shield | 5 | | |

There are various possibilities for cable entry of the RS 485 .
Fig. 1 : connection example four-wire RS 485 (RS 422)

2.2.2 RS 422 version (four-wire - RS 485)

The RS 422 bus is of the RS 485 four-wire type with two pairs of conductors and a common ground.
The data on the master wire pair (RXD) are received only by the slaves. The data on the slave wire pair (TXD) are received only by the master.
Allocation of descriptions for the four-wire MODBUS definition according to [1]:

Description MODBUS	correspondence in the instrument
TXD1	RXD-A
TXDO	RXD-B
RXD1	TXD-A
RXD0	TXD-B
Common	GND

KS90-1		IOT 150		M-4		ADAM-4520-A	
Signal	Terminal	Signal	Terminal	Signal	Terminal	Signal	Terminal
TXD-B	15	RXD-B	3	RXD-A	1	RX-	
TXD-A	17	RXD-A	8	RXD-B	2	RX ${ }_{+}$	
RXD-B	12	TXD-B	4	TXD-A	3	TX-	
RXD-A	14	TXD-A	9	TXD-B	4	TX +	
GND	13	GND	5	Shield	5		

The following cable connection methods are possible.
Fig. 2 connection example RS 485

Master z.B. / e.g.

Converter RS 232-RS 422/485'

2.2.3 Cable installation

Depending on each application, suitable cables are to be used for the bus. When installing the cables, all relevant regulations and safety codes (e.g. VDE 0100) must be observed:

- Cable runs inside buildings (inside and outside of control cabinets)
- Cable runs outside buildings
- Potential balancing conductors
- Screening of cables
- Measures against electrical interference
- Length of spur lines

In particular, the following points must be considered:

- The RS 485 bus technology used here permits up to 32 devices in a segment to be connected to one bus cable. Several segments can be coupled by means of repeaters.
- The bus topology is to be designed as a line with up to 1000 m length per segment. Extensions by means of repeaters are permitted.
- The bus cable is to be taken from device to device (daisy chaining), i.e. not star connected.
- If possible, spur lines should be avoided, in order to prevent reflections and the associated disturbances in communication.
- The general notes on interference-free wiring of signal and bus leads are to be observed (see Operating notes "EMC - General information' (9407 047 09118)).
- To increase signal transmission reliability, we recommend using screened, twisted pairs for the bus leads.

2.2.4 Screening

The type of screening is determined primarily by the nature of the expected interference.

- For the suppression of electrical fields, one end of the screened cable must be grounded. This should always be done as the first measure.
- Interference due to alternating magnetic fields can only be suppressed, if the screened cable is grounded at both ends. However, this can lead to ground current earth loops: galvanic disturbance along the reference potential lead can interfere with the useful signal, and the screening effect is reduced.
- If several devices are linked to a single bus, the screen must be connected at each device, e.g. by means of screen clamps.
- The bus screen must be connected to a central PE point, using short, low-impedance connections with a large surface, e.g. by means of screen clamps.

2.2.5 Terminating resistors

The widespread US Standard EIA RS 485 recommends fitting terminating resistors at each end of the bus cable.
Terminating resistors usually have a value of approx. 120 ohms, and are connected in parallel between the data lines A and B (depending on the cable impedance; for details, see the cable manufacturer's data sheet). Their purpose is to eliminate reflections at the end of the leads, thus obtaining a good transmission quality. Termination becomes more important, the higher the transmission speed is, and the longer the bus leads are.

However, if no signals are applied to the bus, it must be ensured that the signal levels are clearly defined. This done by means of pull-up and pull-down resistors between +5 V or GND , and the drivers. Together with the bus terminating resistor, this forms a voltage divider. Moreover, it must be ensured that there is a voltage difference of at least $\pm 200 \mathrm{mV}$ between the data lines A and B, as seen by the receiver.
(i) Normally, an external voltage source is provided.

Fig. 6 shows the device connections as recommended by the MODBUS User Organization [1].
Fig. 3 Recommended connections

With four-wire connection (RS 422), each wire pair corresponds to the drawing above.
If no external voltage source is available, and if there are only a few participants on the bus (e.g. only a master and a slave device), and the transmission speed is low (e.g. 9600 bits/s), the lead lengths are short, and terminating resistors have been fitted, it is possible that the minimum signal level cannot be reached. This will cause disturbances in signal transmission.

Therefore, if only a few PMA devices are connected, we recommend the following procedure before fitting terminating resistors:

Baudrate	Lead length	No. of PMA devices	Terminating resistor
$\leq 9600 \mathrm{Bist} / \mathrm{s}$	$\leq 1000 \mathrm{~m}$	<8	no
$19200 \mathrm{Bit} / \mathrm{s}$	$\leq 500 \mathrm{~m}$	<8	no
$38400 \mathrm{Bit} / \mathrm{s}$	$\leq 250 \mathrm{~m}$	<8	no
beliebig		≥ 8	useful
			other cases: try out

If less than 8 PMA devices are connected to a bus with the above maximum lead lengths, no terminating resistors should be fitted.

Note: If additional devices from other manufacturers are connected to the bus, no general recommendations are possible - this means: trial and error!

2.2.6 Installation notes

- Measurement and data leads should be kept separate from control leads and power cables.
- Twisted and screened cables should be used to connect sensor. The screen must be grounded.
- Connected contactors, relays, motors, etc. should be fitted with RC snubber circuits in accordance with manufacturer specifications.
- The device must not be installed near powerful electrical or electromagnetic fields.
- The device is not certified for installation in explosion-hazarded areas.
- Incorrect electrical connections can result in severe damage to the device.
- Please observe all safety instructions.

2.3
 Bus settings

2.3.1 Bus address

The participant address of a device connected to a bus must be adjusted by one of the following means:

- the Engineering Tool BlueControl ${ }^{\circledR}$ using the menu item Othr/Addr
- or via the device's front panel (see below)

Fig. 4 Setting a bus address

Every device connected to a bus must have a different, unique address.

Please regard: When allocating the unit's addresses don't give the same address to two units. In this case a strange behaviour of the whole bus becomes possible and the busmaster will not be able to communicate with the connected slave-units.

2.3.2 Transmission parameters

The transmission parameters of all devices linked to a bus must have the same settings.
Baudrate (bAud)
The baudrate is the measure of data transmission speed. The devices support the following transmission speeds:

- 38000 bits/s
- $19200 \mathrm{bits} / \mathrm{s}$
- 9600 bits/s
- 4800 bits/s
- 2400 bits/s

Parity / Stop bit (PrtY)

The parity bit is used to check whether an individual fault has occurred within a byte during transmission.
The device supports:

- even parity
- odd parity
- no parity

With even parity, the parity bit is adjusted so that the sum of the set bits in the 8 data bits and the parity bit result in an even number. Conversely, the same applies for uneven parity.

If a parity error is detected upon receipt of a message, the receiving device will not generate an answer.
Other parameters are:

- 8 data bits
- 1 start bit
- 1 stop bit

1 or 2 stop bits can be selected when adjusting 'no parity'.
The max. length of a message may not exceed 256 bytes.

Master operation (MASt)

The KS 90-1 master function is limited to broadcast messages (data transmission to all connected slaves).
For operation as a master, the instrument must be configured accordingly by means of BlueControl® (engineering software for KS 90-1).

Fig. 5 : Master function parameter setting

A possible MODBUS master configuration is given in the drawing shown above. In this example, the actual master set-point (source address 3170) is transmitted to the slaves (target address 3180) at intervals of 5 seconds.

Fig. 6 : Example

2.5 System layout

Please observe the guidelines and notes provided by the manufacturer of the master device regarding the layout of a communication system.

2.5.1 Minimum configuration of a MODBUS installation

A MODBUS installation consists of not less than the following components:

- a bus master, which controls the data traffic
- one or more slave participants, which provide data upon demand by the master
- the transmission media, consisting of the bus cable and bus connectors to link the individual participants, plus a bus segment (or several, which are connected by means of repeaters).

2.5.2 Maximum configuration of a MODBUS installation

A bus segment consists of max. 32 field units (active and passive). The greatest number of slave participants that can be operated by one MODBUS master via several segments, is determined by the internal memory structure of the master. Therefore, you should know the specifications of the master when planning a MODBUS installation.
The bus cable can be opened at any point in order to add another participant by means of a bus connector. At the end of a segment, the bus cable can be extended up to the total permissible length for a segment. The permissible length of a bus segment depends on the selected transmission speed, which in turn is determined mainly by plant layout (length of each segment, distributed inputs/outputs) and the required scan cycles for individual participants. All participants connected to the bus must be configured for the same transmission speed (bit rate).

MODBUS devices must be connected in a line structure.

If more than 32 participants are required, or larger distances than the permissible length of one segment are needed, the MODBUS installation can be extended by means of repeaters.

Fig. 7 structure

Slave without terminating resistor

Slave with terminating resistor

Repeater without terminating resistor
Repeater with terminating resistor

A fully configured MODBUS installation may contain max. 247 participants with the address range 1...247. Every installed repeater reduces the max. number of participants with a segment. Repeaters are passive participants and do not require a MODBUS address. However, its input circuit represents an additional load in the segment due to the current consumption of the bus driver. Nonetheless, a repeater has no influence on the total number of participants connected to the bus. The maximum number of series-connected repeaters can differ, depending on the manufacturer. Therefore, you should ask the manufacturer about possible limitations when planning a MODBUS installation.

2.5.3 Wiring inside buildings

The following wiring hints apply for twisted-pair cables with screen. The cable screen serves to improve overall electromagnetic compatibility.

Depending on requirements, the one or both ends of the cable screen must be connected to a central earth point (PE) by means of low-impedance connections with a large surface, e.g. screen clamps. When installing a repeater or field unit in a control cabinet, the cable screen should be connected to an earth rail mounted as close as possible to the cable entry into the cabinet.

The screen must be taken right up to the field unit, where it is to be connected to the conductive housing and/or the metal connector. Hereby, it
 must be ensured that the device housing (and possibly the control cabinet in which the device is installed), are held at equal ground potential by means of low-impedance connections with a large surface. Connecting a screen to a lacquered or painted surface is useless. By observing these measures, high-frequency interference will be grounded reliably via the cable screens. Should external interference voltages still reach the data lines, the voltage potential will be raised symmetrically on both lines, so that in general, no destructive voltage differences can arise. Normally, a shift of the ground potential by several volts will not have an effect on reliable data transmission. If higher voltages are to be expected, a potential balancing conductor with a minimum cross-section of $10 \mathrm{~mm}^{2}$ should be installed parallel to the bus cable, with connections to the reference ground of every field unit. In case of extreme interference, the bus cable can be installed in a metal conduit or channel. The conduit tube or the channel must be earthed at regular distances.

The bus cable must always be installed with a minimum separation of 20 cm from other cables carrying voltages above 60 V . Similarly, the bus cable must be run separately from telephone lines, as well as from cables leading into explosion-hazarded areas. In these cases, we recommend installing the bus cable in a separate cable tray or channel.

Cable trays or channels should always be made of conductive materials, and must be earthed at regular distances. Bus cables should not be subjected to any mechanical strains or obvious risks of damage. If this cannot be ensured, suitable measures must be undertaken, such as installation in conduit.

Floating installation:

If the installation must be floating (no earth connection) for certain reasons, the device reference ground must only have a high-impedance connection to earth (e.g. an RC combination). The system will then find its own earth potential. When connecting repeaters for the purpose of linking two bus segments, a floating installation is recommended, to prevent possible potential differences being transferred from one segment to the next.

3 Bus protocol

3.1

Composition of a transmission byte

Originally, the MODBUS protocol was defined for the communication between a supervisory system and the Modicon® PLC. It used a master/slave structure, in which only one device (master) is able to initiate data transactions (queries).
The query message from the master is answered (response) by other devices (slaves), which supply the requested data.
Moreover, the master can address a specific slave via its MODBUS address, or address all connected slaves by means of a general message (broadcast).
The MODBUS protocol determines the transmission formats for the query and the response. Function codes define the actions to be executed by the slaves.
Within the device, the MODBUS protocol uses the RTU (remote terminal unit) mode, i.e. every transmitted byte of a message contains two hexadecimal characters (0...9, A...F).

The composition of a byte in the RTU-protocol is as follows:

Start bit	8 data bits	Parity/Stop bit	Stop bit

3.2 General message frame

The message is read into a data buffer with a defined maximum length. Longer messages are not accepted, i.e. the device does not answer.

The message consist of the following elements:

Device address	Function code	Data field	CRC	End of frame detection
1 byte	1 byte	$\mathbf{N}^{*} 1$ bytes	2 bytes	

- Device address (Addr)

The device address is used for identification. Device addresses can be assigned in the range of $1 \ldots 127$. The device address '0' is reserved for 'Broadcast' messages to all slaves. A broadcast message can be transmitted e.g. with a write instruction that is then executed by all the slaves on the bus. Because all the slaves execute the instruction, no response messages are generated.

- Function code

The function code defines the transaction type in a message. The MODBUS specification defines more than 17 different function codes. Supported codes are described in Section 3.6. „Function codes".

- Data field

The data field contains the detailed specifications of the transaction defined by the function code. The length of the data field depends on the function code.

- CRC

As a further means of fault detection (in addition to parity bit detection) a 16-bit cyclical redundancy check (CRC) is performed. The CRC code ensures that communication errors are detected. For additional information, see Section 3.2.1. "CRC".

- End of frame detection

The end of a message is defined by a period of 3,5 characters, during which no data transfer occurs. For additional information, see Section 3.2.2. „End of frame detection"
(i) Further information is given in the documents named in [1] or under http://www.modbus.org.

3.2.1 CRC

The CRC is a 16 -bit value that is attached to the message. It serves to determine whether a transmitted message has been received without errors. Together with the parity check, this should detect all possible communication errors.
(i) If a parity fault is detected during reading, no response message will be generated.

The algorithm for generating a CRC is as follows:
(1) Load CRC register with FFFFhex.
(2) Exclusive OR the first transmit/receive byte with the low-order byte of the CRC register, putting the result into the CRC register, zero-filling the MSB.
(3) Shift the CRC register one bit to the right.
(4) If the expelled bit is a ' 0 ' repeat step 3. If the expelled bit is a ' 1 ', exclusive OR the CRC register with value A001hex.
(5) Repeat steps 3 and 4 for the other 7 data bits.
(6) Repeat steps 2 to 5 for all further transmit/receive bytes.
(7) Attach the result of the CRC register to the message (low-order byte first, then the high-order byte). When checking a received message, the CRC register will return ' 0 ', when the message including the CRC is processed.

3.2.2 End of frame detection

The end of a message (frame) is defined as a silence period of 3.5 characters on the MODBUS.
A slave may not start its response, and a master may not start a new transmission before this time has elapsed.
However, the evaluation of a message may begin, if a silence period of more than 1.5 characters occurs on the MODBUS. But the response may not start before 3,5 characters of silence.

Transmission principles

Two transmission modes are used with MODBUS:

- Unicast mode

- Broadcast mode

In the Unicast mode, the master addresses an individual device, which processes the received message and generates a response. The device address can be $1 . . .247$. Messages always consist of a query (request) and an answer (response). If no response is read within a defined time, a timeout error is generated.

In the Broadcast mode, the master sends a write instruction (request) to all participants on the bus, but no responses are generated. The address ' 0 ' is reserved for broadcast messages.

Response delay (dELY)

Some devices require a certain period to switch from transmit to receive. The adjusted delay is added to the silent period of 3,5 characters at the end of a message, before a response is generated. The delay is set in ms .

3.5 Modem operation (C.dEL)

The end of frame detection of a received MODBUS message can be increased by the period 'C.del'. This time is needed e.g. for transmission via a modem, if messages cannot be transmitted continuously (synchronous operation). The delay is set in ms.

3.6 Function codes

Function codes serve to execute instructions. The device supports the following function codes:

Function code hex		dez	Description
0×03	3	Read Holding (Output) Register	Reading of process data, parameters, and configuration data
0×04	4	Read Input Register	Reading of process data, parameters, and configuration data
0×06	6	Preset Single Register (Output)	Wordwise writing of a value (process value, parameter, or configuration data)
0×08	8	Diagnostics	Reading the MODBUS diagnostic register
0×10	16	Preset Multiple Register (Output)	Wordwise writing of several values (process data, parameter or configuration data)

The behaviour of function codes 3 and 4 is identical.
The following sections show various examples of message composition.

3.6.1 Reading several values

Messages with function codes 3 or 4 are used for (wordwise) reading of process data, parameters or configuration data. For reading 'Float' type data, 2 values must be requested for each datum.

The composition of a read message is as follows:
Request:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	03 or 04	Reading process data, parameters or configuration data
Start address High Start address Low	02	Starting address 650
No. of values	8 A	
CRC	00	2 datums (2 words)
	CRC-Byte1 CRC-Byte2	

Response:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	03 oder 04	Reading process data, parameters or configuration data
No. of bytes	04	4 data bytes are transmitted
Word 1	$\begin{aligned} & 00 \\ & D E \end{aligned}$	Process data, parameters or configuration data. Address 650= 222
Word 2	$\begin{aligned} & \hline 01 \\ & 4 D \\ & \hline \end{aligned}$	Process data, parameters or configuration data. Address 651= 333
CRC	CRC-byte1 CRC-byte2	

A broadcast message is not possible for function codes 3 and 4.

If the first addressed value is not defined, an error message "ILLEGAL DATA ADDRESS" is generated. If no further data are defined in the areas to be read following the first value, these areas will be entered with the value "NOT DEFINED VALUE". This enables areas with gaps to be to be read in a message.

3.6.2 Writing a single value

Messages with function code 6 are used for (wordwise) writing of process data, parameters or configuration data as integers. This function is not suitable for writing 'Float' type data.

The composition of a write message is as follows:
Request:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	06	Writing a single value (process data, parameter or configuration)
Write address High	02	Write address 650
Write address Low	8 A	
Value	00	Preset value $=123$
	$7 B$	
CRC	CRC-byte1	
CRC-byte2		

Response:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	06	Writing a single datum (process data, parameter or configuration)
Write address High	02	Write address 650
Write address Low	8 A	
Value	00	Preset value $=123$
	$7 B$	
CRC	CRC-Byte1 CRC-Byte2	

If everything is correct, the response message corresponds exactly to the default.
The devices can also receive this message as a broadcast with the address ' 0 '.
A default value in the 'Real' data format is not possible, as only 2 bytes can be transmitted as value.
If a value is outside the adjustable range, the error message "ILLEGAL DATA VALUE" is generated. The datum remains unchanged. Also if the datum cannot be written (e.g. configuration data, and the device is online), an error message "ILLEGAL DATA VALUE" is generated.

3.7 Writing several values

Messages with function code 16 are used for (wordwise) writing of process data, parameters or configuration data. For writing 'Float' type data, 2 values must be transmitted for each datum.

The composition of a write message is as follows:
Request:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	10	Writing several process values, parameters or configuration data
Start address High	02	Write address 650
Start address Low	8 A	
No. of values	00	2 values
	02	4 data bytes are transmitted
No. of bytes	04	Process value, parameters or configuration data.
Word 1	00	Address 650 = 222
Word 2	DE	Process value, parameters or configuration data.
CRC	01	
	$4 d d r e s s ~ 651=333$	

Response:

Field name	Value (hex)	Explanation
Address	11	Address 17
Function	10	Writing several process values, parameters or configuration data
Start address High	02	Write address 650
Start address Low $8 A$		
No. of values	00	process values, parameters or configuration data
	02	
CRC	CRC byte1	
	CRC byte2	

The devices can also receive this message as a broadcast with the address ' 0 '.

If the first value is not defined, an error message "ILLEGAL DATA ADDRESS" is generated. If the first value cannot be written (e.g. configuration data, and the device is online), an error message "ILLEGAL DATA VALUE" is generated.

If no further data are defined or cannot be written in the specified areas following the first value, these areas will be skipped. The data in these locations remains unchanged. This enables areas with gaps, or that are currently not writable, to be changed with a message. No error message is generated.

If a value is outside the adjustable range, the error message "ILLEGAL DATA VALUE" is generated. Subsequent data are not evaluated. Previously accepted correct data are active.
3.8 Error record

An error record is generated, if a message is received correctly, but message interpretation or the modification of a datum is not possible.

If a transmission error is detected, no response is generated. The master must retransmit the message.
Detected transmission errors are:

- Parity fault
- Framing error (no stop bit received)
- Overrun error (receiving buffer has overflowed or data could not be retrieved quickly enough from the UART)
- CRC error

The composition of the error record is as follows:

Field name	Value	Explanation
Address	11	Address 17
Function	90	Error record for the message 'Writing several parameters or configuration data'. Composition: 80hex + function code
Error code	02	ILLEGAL DATA ADDRESS
CRC	CRC byte1 CRC byte2	

In the 'Function' field, the most significant bit is set.
The error code is transmitted in the subsequent byte.

3.8.1 Error codes

The following error codes are defined:

Code	Name	Explanation
01	ILLEGAL FUNCTION	The received function code is not defined in the device.
02	ILLEGAL DATA ADDRESS	The received address is not defined in the device, or the value may not be written (read only). If several data are read simultaneously (function codes 01, 03, 04) or written simultaneously (function codes 0F, 10), this error is only generated if the first datum is not defined.
03	ILLEGAL DATA VALUE	The received value is outside the adjusted limits or it cannot be written at present (device is not in the configuration mode). If several data are written simultaneously (function codes 0F, 10), this error is only generated if the first datum cannot be written.
04	SLAVE DEVICE FAILURE	More values are requested than permitted by the transmission buffer.

Other error codes specified in the MODBUS protocol are not supported.

3.9 Diagnosis

By means of the diagnosis message, the device can be prompted to send check messages, go into operational states, output counter values or to reset the counters.
This message can never be sent as a broadcast message.
The following functions have been defined:

Code	Explanation
Ox00	Return transmission of the received message
Ox01	Restart of communication (terminates the Listen Only mode)
Ox02	Return transmission of the diagnosis register
Ox04	Change to the Listen Only mode
Ox0A	Delete the counter and reset the diagnosis register
Ox0B	Return transmission of the message counter (all messages on the bus)
Ox0C	Reset of the counter for faulty message transmissions to this slave (parity or CRC error)
Ox0D	Return transmission of the counter for messages answered with error code
Ox0E	Return transmission of the message counter for this slave
Ox0F	Return transmission of the counter for unanswered messages
Ox10	Return transmission of the counter for messages answered with NAK
Ox11	Return transmission of the counter for messages answered with Busy
Ox12	Return transmission of the counter for too long messages
Ox40	Return transmission of the parity error counter
0x41	Return transmission of the framing error counter (stop bit not detected)
Ox42	Return transmission of the counter for full buffer (message longer than receiving buffer)

\square Request in the Integer format:
If the setting for Integer with decimals (most significant 3 bits) is used for the address, the counter contents will be transmitted in accordance with the necessary conversion factor.
\square Request in the Float format:
If the setting for Float (most significant 3 bits are 010) is used for the address, the counter contents will be transmitted in the IEEE format. The largest value is 65535 , because the counters in the device are designed as word counters.
In the Float format, a 4-byte data field is returned with a request for counter contents. In all other cases, a 2-byte data field is returned.

When switching into the Listen mode (0×04) and at restart after the device has changed into the Listen mode, no response is generated.
If a restart diagnosis message is received while the device is not in the Listen mode, the device generates a response.
A diagnosis message is composed as follows:
Request:

Field name	Value	Explanation
Address	11	Address 17
Function	08	Siagnosis message
Sub-function High	00	Sub-function code
Sub-function Low	YY	Further data definitions
Data field	Byte 1 Byte 2	
CRC	CRC byte1	
CRC byte2		

3.9.1 Return transmission of the received message (0×00)

The message serves as a check whether communication is operational.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0000	2 bytes of any content	Return transmission of the received datum

3.9.2 Restart of communication (terminates the Listen Only mode) (0x01)

The slave is instructed to initialize its interface, and to delete the event counters. In addition, the device is instructed to exit the Listen Only mode. If the device already is in the Listen Only mode, no response is generated.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0001	0000	0000

3.9.3 Return transmission of the diagnosis register (0×02)

The slave sends its 16 -bit diagnosis register to the master. The data contained in this register are freely definable. For example, the information could be: EEPROM faulty, LED defective, etc.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0002	0000	Contents of the diagnosis register

3.9.4 Change to the Listen Only mode (0x04)

The slave is instructed not to execute or answer any messages addressed to it. The device can only return to normal operation by means of the diagnosis message 'Sub-function 0001 ' or by means of a new power up.

The function serves to disable a module that is behaving erratically on the MODBUS, so that the bus can continue operations. The device does not generate a response after receiving this message.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0004	0000	No response

3.9.5 Delete the counter and reset the diagnosis register ($0 \times 0 \mathrm{~A}$)

The slave is instructed to delete the contents of its event counter and to reset the diagnosis register. Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
00 OA	0000	0000

3.9.6 Return transmission of the message counter (0x0B)

The slave is instructed to return the value of its message counter.
The counter contains the sum of all messages, which the slave has recorded on the bus. This count includes all the messages transmitted by the master and the other slaves. The count does not include the response messages of this slave.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 B	0000	Message counter

3.9.7 Return transmission of the counter for faulty message transmissions

The slave is instructed to return the value of its counter for faulty message transmissions.
The counter contains the sum of all messages addressed to the slave, in which an error was detected. Hereby, the faults can be CRC or parity errors.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 C	0000	Contents of counter for faulty message transmissions

3.9.8 Return transmission of the counter for messages answered with error code

The slave is instructed to return the value of its counter for the messages answered with error code. The counter contains the sum of all messages addressed to the slave, and which were answered with an error code.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
$000 D$	0000	Contents of counter for messages answered with an error code

3.9.9 Return transmission of the message counter for this slave

The slave is instructed to return the value of its counter for messages to this slave.
The counter contains the sum of all messages addressed to the slave.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 E	0000	Contents of counter for messages addressed to this slave

3.9.10 Return transmission of the counter for unanswered messages

The slave is instructed to return the value of its counter for unanswered messages.
The counter contains the sum of all messages addressed to the slave, which were not answered because of internal events or detected errors.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
000 F	0000	Contents of counter for unanswered messages

3.9.11 Return transmission of the counter for messages answered with NAK

The slave is instructed to return the value of its counter for messages answered with NAK.
The counter contains the sum of all messages addressed to the slave, which were answered with NAK.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0010	0000	Contents of counter for messages answered with NAK

3.9.12 Return transmission of the counter for messages answered with Busy

The slave is instructed to return the value of its counter for messages answered with Busy.
The counter contains the sum of all messages addressed to the slave, which were answered with Busy. Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0012	0000	Contents of counter for messages answered with Busy

3.9.13 Return transmission of the parity error counter

The slave is instructed to return the value of its counter for parity errors.
The counter contains the sum of all messages addressed to the slave, in which a parity error was detected. Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0040	0000	Contents of counter for the number of parity errors

3.9.14 Return transmission of the framing error counter

The slave is instructed to return the value of its counter for the number of framing errors.
The counter contains the sum of all messages addressed to the slave, in which a framing error was detected. A framing error occurs, if the stop bit at the end of a byte is not detected.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0041	0000	Contents of counter for the number of framing errors

3.9.15 Return transmission of the counter for too long messages

The slave is instructed to return the value of its counter for too long messages.
The counter contains the sum of all messages addressed to the slave, which caused an overflow of the receiving buffer, or if the data were not retrieved from the UART quickly enough.
Definition of the received and returned data:

Sub-function	Received data field	Transmitted data field
0042	0000	Counter for too long messages

4 MODBUS addresses, address areas, and address formats

Area definitions

The address is coded in 2 bytes. The most significant 3 bits determine the data transmission format. The following formats are available for rail line devices:

- Integer
- Integer with 1 decimal
- (Float acc. to IEEE)

Address area hex	dez. \quad Data transfer format	Smallest transferable value	Largest transferable value	Resolution	
$0 \times 0000 \ldots 0 \times 1$ FFF	$0 \ldots 8191$	Integer without decimals	-30000	+32000	$+/-1$
$0 \times 2000 \ldots 0 \times 3$ FFF	$8192 \ldots 16383$	Integer with 1 decimal	-3000.0	+3200.0	$+/-0.1$
$0 \times 4000 \ldots 0 \times 7$ FFF	$16384 \ldots 32767$	Float (IEEE format)	$-1.0 \mathrm{E}+037$	$+1.0 \mathrm{E}+037$	$+/-1.4 \mathrm{E}-045$

For integer numbers with and without decimals, the value range -30000 to +32000 is transmitted via the interface. Scaling with the factor 1 or 10 must be carried out by the transmitting device as well as by the receiving device.

- Values are transmitted in the Motorola format (big endian).
- The relevant areas are grouped for process data, parameter and configuration data reading and writing.
- Multiple definition of process data in different groups is possible.

4.2

Special values

The following special values are defined for transmission in the integer format:

- -31000 Sensor fault

This value is returned for data that do not represent a meaningful value due to a sensor fault.

- -32000 Switch-off value

The function is disabled.

- -32500 Undefined value

The device returns this value, if a datum is not defined within the requested range („NOT DEFINED VALUE").

- -32768 Corresponds to 0x8000 hex.

The value to be transmitted lies outside the transferable integer value range.

The following special values are defined for transmission in the Float format:

- -1.5E37 This datum is not defined.

The device returns this value, if a datum is not defined within the requested range.

4.3 Composition of the address tables

In the address tables shown in Section 5 , the addresses for every parameter of the corresponding data format are specified in decimal values.
The tables are structured as follows:

Name	R/W	Address	Integer	Real	Type	Value/off	Description
		base 1 dP					

- Name Description of the datum
- R/W permitted type of access: R = read, W = write
- Address integer Address for integer values
- base Integer without decimals
- $1 \mathrm{dP} \quad$ Integer with 1 decimal
- Real Floating point number / Float (IEEE format)
- Type internal data type
- Value/off permissible value range, switch-off value available
- Description Explanations

4.4 Internal data types

The following data types are assigned to data used in the device:

- Float

Floating point number
Value range: -1999 ... -0.001, 0, 0.001 ... 9999

- INT

Positive whole integer number
Value range: 0 ... 65535
Exception: Switch-off value '-32000'

- Text

Text string consisting of n characters, currently defined $n=5$
Permissible characters: 20 H ...7FH

- Long

Positive whole Long number
Value range: 0 ... 99999

- Enum

Selection value
5 Index
Index

A

- adress areas	$27-28$
- adress formats	$27-28$
- adress tables	$31-32$
- adressing	5
- area definitions	27

B

- baudrate 13
- broadcast 17
- broadcast - mode 18
- bus adress 13
- bus protocol 17-26
- bus segment 15
- busprotocol 17-26

C

- cable installation 11
- cable screen 16
- commisioning the interface 6-14
- composition of the address tables 28
- CRC 17-18

D

- data 17
- device address 17
- diagnosis 23-26

E

- electrical connections 6-12
- end of frame detection 18
- error codes 22
- error record 22

F

- format
float27
float acc. to ieee 27
integer 27
motorola 27
- four-wire 9
- function code 17,
19-20
- function codes 19-20
G
- general message frame 17
I
- installation notes 13
- internal data types 28
L
- lead length 5
M
- max. length 14
- maximum configuration 15

$6 \quad$ Address tables

The following sections describe the address tables for:

- Universal process controller KS 90-1 / KS92-1
- Universal programmer KS 90-1P / KS 92-1P

6.1 Notes to program addresses

Please note the following rules for addressing the programs of the programmer KS 90-1 programmer / KS 92-1 programmer:

- The currently active program can be addressed with 6100 ff .
- The start addresses of the stored programs begin with address 6200 ff for program 1, 6300 ff for program 2 and so on (see table below)
- The program structure is equal for each program.

	Program start addresses				
	base	1 dP	2 dP	3dP	real
currently active program	6100	14292	22484	30676	44968
Program 1	6200	14392	22584	30776	45168
Program 2	6300	14492	22684	30876	45368
Program 3	6400	14592	22784	30976	45768
Program 4	6500	14692	22884	31076	45968
Program 5	6600	14792	22984	31176	46168
Program 6	6700	14892	23084	31276	46368
Program 7	6800	14992	23184	31376	46568
Program 8	6900	15092	23284	31476	46768
Program 9	7000	15192	23384	31576	46968
Program 10	7100	15292	23484	31676	47168
Program 11	7200	15392	23584	31776	47368
Program 12	7300	15492	23684	31876	47568
Program 13	7400	15592	23784	31976	47768
Program 14	7500	15692	23884	32076	47968
Program 15	7600	15792	23984	32176	48168
Program 16	7700	15892	24084	32276	48368

(i) Changes in the active program (address 6100ff) are not stored permanently. If a program value should be stored permanently, then write the value to the stored program address directly.

Code Table

Table Of Contents

1 Cntr

ConF 1
PAr 3
Signal 6
2 InP. 1
ConF 12
PAr 13
Signal 13
$3 \operatorname{InP} .2$
ConF 14
PAr 14
Signal 14
4 Lim
ConF 15
PAr 16
Signal 17
5 Lim2
ConF 18
PAr 18
Signal 19
6 Lim3
ConF 19
PAr 20
Signal 21
7 LOG
ConF 21
Signal 24
8 ohnE
PAr 26
Signal 26
9 ohn=1
Signal 29
10 ohn=229
11 ohn ${ }^{2} 3$ 29
12 othr
ConF 30
Signal 32
13 Out. 1
ConF 36
Signal 38
14 Out. 2
ConF 39
Signal 40
15 Out. 3
ConF 41
Signal 43
16 Out. 5
ConF 44
Signal 46
17 Out. 6
ConF 46
Signal 48
18 PAr. 2
PAr 49
19 ProG
PAr 49
Signal 52
20 SEtp
PAr 53
Signal 54
21 Tool
ConF 54

Table Of Contents

C.Act	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5052 \\ 13244 \\ 21436 \\ 29628 \end{array}$	42872	Enum	Enum_CAct	Operating sense of the controller. Inverse operation (e.g. heating) means increased heat input when the process value falls. Direct operation (e.g. cooling) means increased heat input when the process value increases.
						0 In	Inverse or opposed-sense response, e.g. heating. The controller output is increased with a falling process value, and decreased with a rising process value.
						1 Di	Direct or same-sense response, e.g. cooling. The controller output is increased with a rising process value, and decreased with a falling process value.

rnG.L	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5059 \\ 13251 \\ 21443 \\ 29635 \end{array}$	42886	Float	-1999...9999 \square	Lower limit for the controller's operating range. The control range is independent of the measurement range. Reducing the control range will increase the sensitivity of the self-tuning process.
rnG.H	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5060 \\ 13252 \\ 21444 \\ 29636 \end{array}$	42888	Float	-1999...9999 \square	Upper limit for the controller's operating range. The control range is independent of the measurement range. Reducing the control range will increase the sensitivity of the self-tuning process.
SP2C	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5054 \\ 13246 \\ 21438 \\ 29630 \end{array}$	42876	Enum	Enum_SP2C	W hen switching over to the 2nd setpoint SP.2, control is performed without cooling.
O1							

CYCL	r/w	$\begin{array}{\|l\|} \hline \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \\ \hline \end{array}$	$\begin{array}{r} 5055 \\ 13247 \\ 21439 \\ 29631 \end{array}$	42878	Enum	Enum_CYCL	Duty cycle for 2-point and 3-point controllers. Internally, the controller calculates a continuous output value, which is converted into switching pulses for digital outputs. The user can adapt the setting to calculate various duty cycles (on/ off ratio).

Standard. 'Bathtub curve'. The adjusted duty cycles t1 and t2 are valid for $\pm 50 \%$ control output. With very small and very large control outputs, the effective duty cycle is increased sufficiently to prevent nonsensically short operating pulses. The shortest pulses are limited to $1 / 4$ of t and $1 / 4$ of t 2 .
1 Linear water cooling (standard switching behaviour for heating). Cooling only starts above an adjustable temperature value (E.H20). Cooling 'On' with fixed pulse duration (t.on). Cooling 'Off' with minimum pulse duration (t.ofF), which varies according to controller output.
2 Non-linear water cooling (standard switching behaviour for heating). The cooling characteristic ensures that controller action is relatively weak between 0 and approx. 70\% of controller output. Above that, controller action increases rapidly up to the maximum cooling rate. The parameter 'F. H 2 O ' can be used to alter the curve of the cooling characteristic.
3 W ith constant pulses for heating and cooling. The adjusted duty cycles $\mathrm{t1}$ and t 2 are maintained over the entire output range. The parameter tp is used to adjust the minimum pulse duration. Shorter pulses are added internally until a pulse of length tp can be generated.

Strt	r/w	base 1 dP 2dP 3 dP	5057 13249 21441 29633	42882	Enum	Enum_Strt	Start of self-tuning. Self-tuning can always be started manually at the request of the operator. Here, it is possible to determine that self-tuning is started automatically under the following conditions: On pow er-up or when an oscillation of the process value is detected.
0 no automatic start (manual start via front interface) 1 M anual or automatic start of auto-tuning at power on or when oscillating is detected (oscillating of process value by more than $\pm 0.5 \%$ of the control range, and simultaneously the output value by more than 20\%.) Note: Though the process is unchanged, at power on always the (time-consuming) auto-tuning is started. and							

Adt0	r/w	base 1 dP 2dP 3 dP	5061 13253 21445 29637	42890	Enum	Enum_Adt0		Optimization of the switching cycles $t 1$ and t2 for the DED conversion can be disabled here. In order to fine-tune the positioning action, the switching periods are changed by the self-tuning function, if automatic tuning is configured.
						0 The	The cycle duration is determinated by auto-tuning. Thereby the best controlling results are obtained.	
						Th bad whic	The cycle duration is not determinated by auto-tuning. An oversized cycle duration causes bad control behavior. An undersized cycle duration causes a more frequent switching, which can raise the wearout of mechanical actuators (relay, contactor).	

PArA								
Name	r/w	Adr. In	eger	real	Typ	Value/off		Description
Pb1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5000 \\ 13192 \\ 21384 \\ 29576 \end{array}$	42768	Float	1... 9999	\square	Proportional band 1 (heating) in engineering unit, e.g. ${ }^{\circ} \mathrm{C}$. Pb defines the relationship betw een controller output and control deviation. The smaller Pb is, the stronger is the control action for a given control deviation. If Pb is too large or too small, the control loop will oscillate (hunting).
Pb2	r/w	base 1dP 2dP 3dP	$\begin{array}{r} 5001 \\ 13193 \\ 21385 \\ 29577 \end{array}$	42770	Float	1... 9999	\square	Proportional band 2 (cooling) in engineering units, e.g. ${ }^{\circ} \mathrm{C}$. Pb defines the relationship betw een controller output and control deviation. The smaller Pb is, the stronger is the control action for a given control deviation. If Pb is too large or too small, the control loop will oscillate (hunting).

Cntr								
PArA								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
ti1	r/w		5002 13194 21386 29578	42772	Float	1... 9999	\square	Integral action time 1 (heating) [s]. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
ti2	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 5003 \\ 13195 \\ 21387 \\ 29579 \end{array}$	42774	Float	1... 9999	\square	Integral action time 2 (cooling) [s]. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
td1	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 5004 \\ 13196 \\ 21388 \\ 29580 \end{array}$	42776	Float	1... 9999	\square	Derivative action time 1 (heating) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.
td2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5005 \\ 13197 \\ 21389 \\ 29581 \end{array}$	42778	Float	1... 9999	\square	Derivative action time 2 (cooling) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.
t1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5006 \\ 13198 \\ 21390 \\ 29582 \end{array}$	42780	Float	0,4...9999	\square	M inimum duty cycle 1 (heating) [s]. With the standard duty cycle converter, the shortest pulse duration is $1 / 4 \mathrm{xt1}$. If the duty cycle is not to be optimized, this must be entered in the configuration. (Default: Optimization of the duty cycle during self-tuning, but also if the output value is less than 5%).
t2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5007 \\ 13199 \\ 21391 \\ 29583 \end{array}$	42782	Float	0,4...9999	\square	M inimum duty cycle 2 (cooling) [s]. W ith the standard duty cycle converter, the shortest pulse duration is $1 / 4 \mathrm{xt1}$. If the duty cycle is not to be optimized, this must be entered in the configuration. (Default: Optimization of the duty cycle during self-tuning, but also if the output value is less than 5%).
SH	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5014 \\ 13206 \\ 21398 \\ 29590 \end{array}$	42796	Float	0...9999	\square	Neutral zone, or switching difference of the signaller [engineering unit].Too small: unnecessarily high switching frequency.Too large: reduced controller sensitivity.W ith 3-point controllers this slows dow n the direct transition from heating to cooling. W ith 3-point stepping controllers, it reduces the switching operations of the actuator around setpoint.
d.SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5016 \\ 13208 \\ 21400 \\ 29592 \end{array}$	42800	Float	-1999...9999	\square	Separation of the D / Y switch-over point from the setpoint [engineering unit]. W ith a significant control deviation heating start is in delta connection. When the control deviation increases, the instrument switches over to reduced power (Y connection) for line-out to the set-point.
tP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5009 \\ 13201 \\ 21393 \\ 29585 \end{array}$	42786	Float	0,1...9999	\square	M inimum pulse duration [s]. Used for switching with constant periods. For positioning values that require a shorter pulse than adjusted for 'tp', the output is suppressed, but 'remembered'. The controller continues adding the internal short pulses until a value equal to 'tp' can be output.

1 Cntr								
PAra								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
tt		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5015 \\ 13207 \\ 21399 \\ 29591 \end{array}$	42798	Float	3... 9999	\square	Travel time of the actuator motor [s]. If no feedback signal is available, the controller calculates the actuator position by means of an integrator and the adjusted motor travel time. For this reason, a precise definition of the motor travel time between min and max 10% and 100%) is important.
Y.Lo		base $1 d P$ 2dP 3dP	$\begin{array}{r} 5018 \\ 13210 \\ 21402 \\ 29594 \end{array}$	42804	Float	-105...105	\square	Lower output limit [\%] The range is depedant of the type of controller: 2 point controller: $0 . . . y m a x+1$ 3 point controller:-105 ymax-1
Y.Hi		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 5019 \\ 13211 \\ 21403 \\ 29595 \end{array}$	42806	Float	-105... 105	\square	Upper output limit [\%] The range is ymin +1 105
Y2		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5017 \\ 13209 \\ 21401 \\ 29593 \end{array}$	42802	Float	-100...100	\square	Second positioning value [\%]. Activated Y 2 = positioner control. Caution: The parameter 'positioning output $Y 2$ ' must not be confused with the controller output $Y 2$!
Y. 0		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5020 \\ 13212 \\ 21404 \\ 29596 \end{array}$	42808	Float	-105...105	\square	Offset for die positioning value [\%]. This is added to the controller output, and has the most effect with P and PD controllers. (W ith PID controllers, the effect is compensated by the integral action.) W ith a control deviation $=0$, the P controller generates a control output YO.
Ym.H		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5021 \\ 13213 \\ 21405 \\ 29597 \end{array}$	42810	Float	-105...105	\square	Limit for the mean control output value Ym in case of sensor break [\%]. The mean control output value is configurable as the response to sensor break. The maximum mean output value $=$ YmH.
L.Ym	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5022 \\ 13214 \\ 21406 \\ 29598 \end{array}$	42812	Float	1...9999	\square	Max. control deviation (xw), at the start of mean value calculation [engineering unit]. W hen calculating the mean value, data are only taken into account if the control deviation is small enough. 'Lym' is a preset value that determines how precisely the calculated output value is matched to the setpoint.
E. H 20	r/w	base 1 dP 2dP 3 dP	$\begin{array}{r} \hline 5013 \\ 13205 \\ 21397 \\ 29589 \end{array}$	42794	Float	-1999...9999	\square	Min. temperature for water cooling. Below the set temperature no water cooling happens
t.on		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5010 \\ 13202 \\ 21394 \\ 29586 \end{array}$	42788	Float	0,1...9999	\square	Impulse length for water cooling. Fixed for all values of controller output.The pause time is varied.
t.off	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5011 \\ 13203 \\ 21395 \\ 29587 \end{array}$	42790	Float	1...9999	\square	M in. pause time for water cooling. The max. effective controller output results from t.on/(t.ontt.off)• 100%

Cntr								
PArA								
Name	r/w	Adr. I	eger	real	Typ	Value/off		Description
F. H 2 O	r/w	base $1 d P$ $2 d P$ $3 d P$	$\begin{array}{r} 5012 \\ 13204 \\ 21396 \\ 29588 \end{array}$	42792	Float	0,1...9999	\square	Adaptation of the (non-linear) water-cooling characteristic.If the cooling action is very strong, and causes an unfavourable transition between heating and cooling, a non-linear characteristic can reduce the cooling action considerably.Adjust $\mathrm{FH} 2 \mathrm{O}=1$ for output values up to -70%; $\mathrm{FH} 2 \mathrm{O}=2$ for values up to approx. -80%, and $\mathrm{FH} 20=0.5$ for up to approx. -60\%.
HYS.L	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5028 \\ 13220 \\ 21412 \\ 29604 \end{array}$	42824	Float	0...9999	\square	Switching hysteresis below the setpoint of the signaller [engineering unit].
HYS.H	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5029 \\ 13221 \\ 21413 \\ 29605 \end{array}$	42826	Float	0...9999	\square	Switching hysteresis above the setpoint of the signaller [engineering unit].

Sgna								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
Tu2	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5145 \\ 13337 \\ 21529 \\ 29721 \end{array}$	43058	Float	0...9999	\square	'Cooling' delay time of the loop. Tu is calculated by the self-tuning function: It is the time delay before the process reacts significantly. In effect, Tu is a dead time that is determined by the reaction of the process to a change of the control output. It is used for defining controller action.
Vmax2	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5146 \\ 13338 \\ 21530 \\ 29722 \end{array}$	43060	Float	0...9999	\square	Max. rate of change for 'cooling', i.e. the fastest process value increase during self-tuning. Vmax is calculated by the self-tuning function, and is determined by the reaction of the process to a change of the control output. It is used for defining controller action.
Kp2	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5147 \\ 13339 \\ 21531 \\ 29723 \end{array}$	43062	Float	0... 9999	\square	Process gain for 'cooling'. For control loops with self-regulation, process gain is the ratio determined by the change of the control output and the resulting permanent change of the process value. Kp is calculated by the self-tuning function, and is used for defining controller action.

1 Cntr

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Cntr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5100 \\ 13292 \\ 21484 \\ 29676 \end{array}$	42968	Int	0... 65535	\square	Status informations of the controller.f.e. switching signals, controller off or informations about selftuning. The controller sratus shows the actual adjustments of the controller.

Bit 0: Sw itching signal heating: 0: off 1: on
Bit 1: Switching signal cooling: 0: off 1: on
Bit 2: Sensor error 0: ok 1: error
Bit 3: Controlsignal: M anual/automatic 0 : automatic 1: manual
Bit 4: Controlsignal: Y2
$0: Y 2$ not activ $1: Y 2$ activ
Bit 5: Controlsignal: Ext. setting of outputsignal
0 : not activ 1: activ
Bit 6: Controlsignal: Controller off 0 : contr. on 1: contr. off
Bit 7: Controlsignal:The activ parameter set
0 : parameterset 1
1: parameterset 2
Bit 8: Loopalarm
0: no alarm
1: alarm
Bit 9: Soft start function
0 : not activ
1: activ
Bit 10: Rate to setpoint
0: not activ
1: activ
Bit 11: Not used
Bit 12-15: Internal functional statuses (operating state)
0000 Automatic
0001 Selftuning is running
0010 Selftuning faulty (W aiting for operator signal)
0011 Sensor error
0100 Not used
0101 Manual
0111 Not used
1000 M anual, with external presetting of the outputsignal
1001 Outputs switched off (neutral)
1010 Abortion of the selftuning (by control-or error-signal)

diFF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5104 \\ 13296 \\ 21488 \\ 29680 \end{array}$	42976	Float	-1999...9999	\square	Control deviation, is defined as process value minus setpoint. Positive Xw means that the process value is above the setpoint. A small control deviation indicates precise control.
POS	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5105 \\ 13297 \\ 21489 \\ 29681 \end{array}$	42978	Float	0... 100	\square	The position feedback Yp shows the actuator position with 3-point stepping controllers. If $Y p$ is outside the limits Y min and Y max, the output of positioning pulses is suppressed.
Tu1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5141 \\ 13333 \\ 21525 \\ 29717 \end{array}$	43050	Float	0...9999	\square	'Heating' delay time of the loop. Tu is calculated by the self-tuning function: It is the time delay before the process reacts significantly. In effect, Tu is a dead time that is determined by the reaction of the process to a change of the control output. It is used for defining controller action.

\section*{1 Cntr
 Signal
 | Name | r/w | Adr. Integer | | real | Typ | Value/off | | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ypid | r | $\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$ | $\begin{array}{r} 5103 \\ 13295 \\ 21487 \\ 29679 \end{array}$ | 42974 | Float | -120... 120 | \square | Output value Ypid is the output signal determined by the controller, and from which the switching pulses for the digital and analog control outputs are calculated. Ypid is also available as an analog signal. e.g. for visualization. |
| Ada.St | r/w | $\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$ | $\begin{array}{r} 5150 \\ 13342 \\ 21534 \\ 29726 \end{array}$ | 43068 | Enum | Enum_AdaStart | | Starting / stopping the self-tuning function.After the start signal, the controller waits until the process reaches a stable condition (PIR) before it starts the self-tuning process. Self-tuning can be aborted manually at any time.
 After a successful self-tuning attempt, the controller automatically resumes normal operation. |
| | | | | | | $0 \quad$'Stop' will
 with the | | rt the self-tuning process, and the controller returns to normal operation us parameter settings. |
| | | | | | | $1 \quad \begin{aligned} & \text { Start of then } \\ & \text { operation }\end{aligned}$ | | f-tuning process is possible during manual or automatic controller |

Yman	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5151 \\ 13343 \\ 21535 \\ 29727 \end{array}$	43070	Float	-110... 110	\square	Absolute preset output value, which is used as output value during manual operation. Caution: W ith 3-point stepping controllers, Yman (evaluated the same as Dyman) is added to the actual output value as a relative shift.
dYman	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5152 \\ 13344 \\ 21536 \\ 29728 \end{array}$	43072	Float	-220... 220	\square	Differential preset output value, which is added to the actual output value during manual operation. Negative values reduce the output.
Yinc	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5153 \\ 13345 \\ 21537 \\ 29729 \end{array}$	43074	Enum	Enum_Yınc		Increasing the output value. There are two speeds: 40 s or 10 s for the change from 0% to 100%. Note: The 3-point stepping controller translates the increments as UP.
						0 Not active		
						1 increment output		

Ydec	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5154 \\ 13346 \\ 21538 \\ 29730 \end{array}$	43076	Enum	Enum_YDec	Decreasing the output value. There are two speeds: 40 s or 10 s for the change from 0% to 100%. Note: The 3-point stepping controller translates the increments as DOW N.
0 Not active							
						1 1 decrement output	

SP.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5101 \\ 13293 \\ 21485 \\ 29677 \end{array}$	42970	Float	-1999...9999 \square	Effective setpoint. The value reached at the end of setpoint processing, after taking W 2, external setpoint, gradient, boost function, programmer settings, start-up function, and limit functions into account. Comparison with the effective process value leads to the control deviation, from which the necessary controller response is derived.
In. 1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5102 \\ 13294 \\ 21486 \\ 29678 \end{array}$	42972	Float	-1999...9999 \square	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).

1 Cntr

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Tune	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5140 \\ 13332 \\ 21524 \\ 29716 \end{array}$	43048	Int	0... 65535	\square	Status information during self-tuning, e.g. the actual condition, and possible results, warnings, and error messages.

Bit 0 Process lined out; $0=$ No; $1=$ Yes
Bit 1 Operating mode 'Self-tuning controller; $0=0 \mathrm{ff} ; 1=0 n$
Bit 2 Result of controller self-tuning; $0=0 K ; 1=$ Fault
Bit 3-7 Not used
Bit 8-11 Result of the 'heating' attempt
0000 No message / Attempt still running
0001 Successful
0010 Successful, with risk of exceeded setpoint
0011 Error: W rong operating sense
0100 Error: No response from process
0101 Error: Turning point too low
0110 Error: Risk of exceeded setpoint
0111 Error: Step output too small
1000 Error: Setpoint reserve too small
Bit 12-15 Result of 'cooling' attempt (same as heating attempt)

Vmax1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5142 \\ 13334 \\ 21526 \\ 29718 \end{array}$	43052	Float	0... 9999	\square	M ax. rate of change for 'heating', i.e. the fastest process value increase during self-tuning. Vmax is calculated by the self-tuning function, and is determined by the reaction of the process to a change of the control output. It is used for defining controller action.
Kp1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5143 \\ 13335 \\ 21527 \\ 29719 \end{array}$	43054	Float	0...9999	\square	Process gain for 'heating'. For control loops with self-regulation, process gain is the ratio determined by the change of the control output and the resulting permanent change of the process value. Kp is calculated by the self-tuning function, and is used for defining controller action.

1 Cntr

- Sional

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
M sg2	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5148 \\ 13340 \\ 21532 \\ 29724 \end{array}$	43064	Enum	Enum_Msg	The result of self-tuning for 'cooling' indicates whether self-tuning was successful, and with what result.

0 No message / Tuning attempt still running
1 Self-tuning has been completed successfully. The new parameters are valid.
2 Self-tuning was successful, but with a warning. The new parameters are valid. Note: Self-tuning was aborted due to the risk of an exceeded setpoint, but useful parameters were determined. Possibly repeat the attempt with an increased setpoint reserve.
3 The process reacts in the w rong direction.
Possible remedy: Reconfigure the controller (inverse <-> direct). Check the controller output sense (inverse <->direct).
4 No response from the process. Perhaps the control loop is open. Possible remedy: Check sensor, connections, and process.
5 The process value turning point of the step response is too low. Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').
$6 \quad$ Self-tuning was aborted due to the risk of an exceeded setpoint. No useful parameters were determined.
Possible remedy: Repeat the attempt with an increased setpoint reserve.
7 The step output change is not large enough (minimum change $>5 \%$). Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').

8 The controller is waiting. Setpoint reserve must be given before generating the step output change.
Acknow ledgment of this error message leads to switch-over to automatic mode.
If self-tuning shall be continued, change set-point, change process value, or decrease set-point range.
9 Impulse tuning failed. No useful parameters were determined. The control loop is perhaps not closed: check sensor, connections and process.

1 Cntr

Signal

S.Lin	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	1151 9343 17535 25727	35070	Enum	Enum_SLin	Linearization (not adjustable for all sensor types S.tYP). Special linearization. The linearization table can be created with the Engineering Tool. The default characteristic is for KTY 11-6 temperature sensors.
0 No special linearization. 1 Special linearization. Definition of the linearization table is possible with the Engineering Tool. The default setting is the characteristic of the KTY 11-6 temperature sensor.							

Corr	r/w	base 1 ldP 2 dP 3 dP	$\begin{array}{r} 160 \\ 8352 \\ 16544 \\ 24736 \end{array}$	33088	Enum	Enum_Corr3		M easured value correction / scaling
						$0 \quad$ Without scaling		
						Th low dis	The offset correction (in the CAL Level) can be done on-line in the process. If InL shows the lower input value of the scaling point, then OuL must be adjusted to the corresponding display value. Adjustments are made via the front panel keys of the device only.	
						$\begin{array}{ll} 2 & \text { Tu } \\ & \text { on } \\ & \text { as } \\ \text { se } \end{array}$	Two-point correction (in CAL-Level) ist possible offline via process value transmitter or on-line in the process. Set process value for the upper and lower scaling point and confirm as input value InL or InH, then set the belonging displayed value OuL and OuH. The settings are done via the front of the device.	
						$\begin{array}{ll} 3 & \begin{array}{l} \text { Sco } \\ \text { (Inh } \\ \\ \text { end } \end{array} \end{array}$	Scaling (at PArA-level). The input values for the upper (InL, OuL) and lower scaling point (InH. OuH) are visible at the parameter level. Adjustment is made via front operation or the engineering tool.	

$2 \operatorname{lnP} .1$								
PArA								
Name	r/w	Adr. In	eger	real	Typ	Value/off		Description
InL. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1100 \\ & 9292 \\ & 17884 \\ & 25676 \end{aligned}$	34968	Float	-1999...9999	\square	Input value of the low er scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the lower scaling point (e.g. 4 mA) is done using the corresponding electrical value.
OuL. 1		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1101 \\ & 9293 \\ & 17485 \\ & 25677 \end{aligned}$	34970	Float	-1999...9999	\square	Display value of the low er scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the lower scaling point, e.g. 4 mA is displayed as $2[\mathrm{pH}]$.
InH. 1	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1102 \\ & 9294 \\ & 17486 \\ & 25678 \end{aligned}$	34972	Float	-1999...9999	\square	Input value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the upper scaling point (e.g. 20 mA) is done using the corresponding electrical value.
OuH. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1103 \\ & 9295 \\ & 17487 \\ & 25679 \end{aligned}$	34974	Float	-1999...9999	\square	Display value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the upper scaling point, e.g. 20 mA is displayed as $12[\mathrm{pH}]$.
t.F1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1104 \\ & 9296 \\ & 17488 \\ & 25680 \end{aligned}$	34976	Float	0... 100	\square	Filter time constant [s]. Every input is fitted with a digital (softw are) low-pass filter for suppressing process-related disturbances on the input leads. Higher filter settings improve the suppression, but increase the delay of the input signals.

PAra								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
InL. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1200 \\ 9392 \\ 17584 \\ 25776 \end{array}$	35168	Float	-1999... 9999	\square	Input value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the lower scaling point (e.g. 4 mA) is done using the corresponding electrical value.
OuL. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1201 \\ 9393 \\ 17585 \\ 25777 \end{array}$	35170	Float	-1999...9999	\square	Display value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the lower scaling point, e.g. 4 mA is displayed as 2 [pH].
InH. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1202 \\ 9394 \\ 17586 \\ 25778 \end{gathered}$	35172	Float	-1999...9999	\square	Input value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the upper scaling point (e.g. 20 mA) is done using the corresponding electrical value.
OuH. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} \hline 1203 \\ 9395 \\ 17587 \\ 25779 \end{gathered}$	35174	Float	-1999...9999	\square	Display value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the upper scaling point, e.g. 20 mA is displayed as $12[\mathrm{pH}]$.

3 InP. 2

signal

In.2r	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1272 \\ 9464 \\ 17656 \\ 25848 \end{gathered}$	35312	Float	-1999...9999 \square	M easurement value before the measurement value correction (unprocessed).
F.Inp		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1280 \\ 9472 \\ 17664 \\ 25856 \end{gathered}$	35328	Float	-1999...9999 \square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

4	Lim							
-	Con=							
	Name	r/w	Adr. Integer		real	Typ	Value/off	Description
	Fnc. 1	r/w	base 1 dP 2dP 3 dP	2150 10342 18534 26726	37068	Enum	Enum_Fcn	Activation and adjustment of the limit value alarm (e.g. for input circuit monitoring), e.g. with/without storage.
	0 No limit value monitoring.							
							1	measured value monitoring. The alarm signal is generated, if the limit is exceeded. If the measured value is within the limits (including hysteresis) again, this alarm signal is resetted.
							M easured value monitoring + alarm status latch. An alarm signal is generated, if the limit is exceeded. A latched alarm signal remains latched until it is manually resetted.	

4 Lim

Con=								
Name	r/w	Adr. I	teger	real	Typ	Value/off		Description
Src. 1	r/w	base $1 d P$ $2 d P$ $3 d P$	2151 10343 18535 26727	37070	Enum	Enum_Src		Source for limit value. Selection of which value is to be monitored.
						$0 \quad$ Process value =absolute alarm		
						$1 \quad \mathrm{C}$	control deviation xw (process value - set-point) = relative alarm Note: M onitoring with the effective set-point W eff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.	
							Control deviation XW (= relative alarm) with suppression during start-up and setpoint changes. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again, at the latest after 10 * Tn .	
						$6 \quad \begin{array}{ll}\text { 6ff } \\ & \text { F } \\ & \text { int }\end{array}$	effective set-point W eff. For example the ramp-function changes the effective set-point untill it matches the internal (target) set-point.	
						7 c	correcting variable y (controller output)	
						8 cc	control variable deviation xw (actual value - internal set-point) $=$ deviation alarm to internal set-point Note: M onitoring with the internal set-point Wint. For example using a ramp it is the target setpoint, not the changing set-point of the ramp.	
						11	Control deviation Xw (= relative alarm) with suppression during start-up and setpoint change. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again.	

LP.AL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5058 \\ 13250 \\ 21442 \\ 29634 \end{array}$	42884	Enum	Enum_LPAL		M onitoring of control loop interruption (not possible with 3-point stepping controller, not possible with signaller)
						0 switched off / inactive		
						LOOP alarm is generated, if with $Y=100 \%$ there is no corresponding reaction of the process variable within the time of $2 \times$ ti. Possible remedial action: Check heating or cooling circuit, check sensor and replace it, if necessary, check controller and switching device.		

PArA							
Name	r/w	Adr.	eger	real	Typ	Value/off	Description
L. 1	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 2100 \\ 10292 \\ 18484 \\ 26676 \end{array}$	36968	Float	-1999...9999 ■	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.

L Lim
Name
H.1

5	Lim2								
-	Cor								
	Name	r/w	Adr. In	eger	real	Typ	Value/of		Description
	Fnc. 2	r/w	base 1 dP 2 dP 3 dP	2250 10442 18634 26826	37268	Enum	Enum_Fcn		Activation and adjustment of the limit value alarm (e.g. for input circuit monitoring), e.g. with/without storage.
0 No limit value monitoring.									
								measured value monitoring. The alarm signal is generated, if the limit is exceeded. If the measured value is within the limits (including hysteresis) again, this alarm signal is resetted.	
								M easured value monitoring +alarm status latch. An alarm signal is generated, if the limit is exceeded. A latched alarm signal remains latched until it is manually resetted.	

Src. 2	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 2251 \\ 10443 \\ 18635 \\ 26827 \end{array}$	37270	Enum	Enum_Src		Source for limit value. Selection of which value is to be monitored.
						$0 \quad \mathrm{P}$	Process value = absolute alarm	
						1	control deviation xw (process value - set-point) = relative alarm N ote: M onitoring with the effective set-point W eff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.	
						2	Control deviation Xw (= relative alarm) with suppression during start-up and setpoint changes. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again, at the latest after 10 * Tn .	
						6	effective set-point W eff. For example the ramp-function changes the effective set-point untill it matches the internal (target) set-point.	
						7 cor		able y (controller output)
						8 C	control variable deviation xw (actual value - internal set-point) = deviation alarm to internal set-point Note: M onitoring with the internal set-point Wint. For example using a ramp it is the target setpoint, not the changing set-point of the ramp.	
						11	Control deviation Xw (= relative alarm) with suppression during start-up and setpoint change. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again.	

PArA								
Name	r/w	Adr. In	eger	real	Typ	Value/off		Description
L. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2200 \\ 10392 \\ 18584 \\ 26776 \end{array}$	37168	Float	-1999... 9999	\square	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.
H. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2201 \\ 10393 \\ 18585 \\ 26777 \end{array}$	37170	Float	-1999... 9999	\square	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper low er limit value plus hysteresis.
HYS. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2202 \\ 10394 \\ 18586 \\ 26778 \end{array}$	37172	Float	0...9999	\square	Hysteresis of the limit value. Switching difference for upper and low er limit value. The limit value must change by this amount (rise above upper limit or fall below low er limit) before the limit value alarm is reset.

PArA								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
L. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2300 \\ 10492 \\ 18684 \\ 26876 \end{array}$	37368	Float	-1999...9999	\square	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.
H. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2301 \\ 10493 \\ 18685 \\ 26877 \end{array}$	37370	Float	-1999...9999	\square	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper low er limit value plus hysteresis.
HYS. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2302 \\ 10494 \\ 18686 \\ 26878 \end{array}$	37372	Float	0...9999	\square	Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount (rise above upper limit or fall below low er limit) before the limit value alarm is reset.
dEL. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2303 \\ 10495 \\ 18687 \\ 26879 \end{array}$	37374	Float	0... 9999	\square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.

6 Lim 3								
\bullet	Sigr							
	Name	r/w	Adr. I	teger	real	Typ	Value/off	Description
	St.Lim	r	base	2370	37508	Enum	Enum_LimStatus	Limit value status: No alarm present or stored.
			1 dP	10562				
			2 dP	18754				
				26946				
0 no alarm								
$\begin{array}{ll}0 & \text { no alarm } \\ 1 & \text { latched alarm }\end{array}$								
2 A limit value has been exceeded.								

SP.E	r/wbase $1 d P$ 	$\begin{array}{r} 1053 \\ 9245 \\ 17437 \\ 25629 \end{array}$	34874	Enum	Enum_dlnP1	Switching betw een internal set-point an external setpoint SP.E. The external SP.E is either the absolute set-point W ext or the offset to the set-point (dependent on instrument and configuration).
					0 no	no function (switch-over via interface is possible)
					1 alw	always active
					2 Dig	Digital Input Dl1 switches
					3 DI2	DI2 switches (only visible with OPTION)
					4 DI3	DI3 switches (only visible with OPTION)
					5 F-ke	F-key switches.

7 LOGI
 ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
Y2	r/w	base 1 dP 2 dP 3 dP	$\begin{gathered} 1054 \\ 9246 \\ 17438 \\ 25630 \end{gathered}$	34876	Enum	Enum_dlnP3	Source of the control signal for activating the second positioning output Y2. Activated Y2 = positioner control. Caution: The parameter 'positioning output Y2' must not be confused with the controller output Y2!
						0 no function (switch-over via interface is possible)	
						2 Di	Digital Input DI1 switches
						3 DI2	DI2 switches (only visible with OPTION)
						4 DI3	DI3 switches (only visible with OPTION)
						5 F-k	F-key switches.
						6 Aut	Auto/manual key switches (A/M key)

$m A n$	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1056 \\ 9248 \\ 17440 \\ 25632 \end{gathered}$	34880	Enum	Enum_dlnp2	Source of the control signal for auto/manual switchover. In the automatic mode, the controller is in charge. In the manual mode, the outputs can be varied independently of the process.
						0 no	no function (switch-over via interface is possible)
							always activated (manual station)
						2 Digit	Digital Input DI1 switches
						3 DI2	DI2 switches (only visible with OPTION)
						DI3 switches (only visible with OPTION)	
						$5 \quad$ F-key	F-key switches.
						6 Auto	Auto/manual key switches (A/M key)

7 LOGI
 ConF

di.Fn	r/w	base $1 d P$ 2dP 3 dP	$\begin{gathered} 1050 \\ 9242 \\ 17434 \\ 25626 \end{gathered}$	34868	Enum	Enum_diFn		Function of digital inputs (valid for all inputs)
						B	Basic setting 'Off': A permanent positive signal switches this function 'On', which is connected to the digital input. Removal of the signal switches the function 'Off' again.	
						B	Basic setting 'On': A permanent positive signal switches this function 'Off', which is connected to the digital input. Removal of the signal switches the function 'On' again.	
						$\begin{aligned} & \text { Pu } \\ & \text { po } \\ & \text { siç } \end{aligned}$	Push-button function. Basic setting 'Off'. Only positive signals are effective. The first positive signal switches 'On'. Removal of the signal is necessary before the next positive signal can sw itch 'Off'.	

siono							
Name	r/w	Adr.	ger	real	Typ	Value/off	Description
St.Di	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \\ \hline \end{array}$	$\begin{array}{r} 1070 \\ 9262 \\ 17454 \\ 25646 \end{array}$	34908	Int	0...7	Status of the digital inputs or of push-buttons (binary coded).
Bit 0 Input 1 Bit 1 Input 2 Bit 2 Input 3 Bit 8 Status of 'F' key Bit 9 Status of 'A/M ' key Bit 10 Status of 'Sel' key Bit 11 Status of 'Down' key Bit 12 Status of 'Up' key Bit 13 Status of 'Loc' key							
L-R	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 1080 \\ 9272 \\ 17464 \\ 25656 \end{array}$	34928	Int	0... 1	Remote operation. Remote means that all values can only be adjusted via the interface. Adjustments via the front panel are blocked.
W_W2	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{gathered} 1081 \\ 9273 \\ 17465 \\ 25657 \end{gathered}$	34930	Int	0... 1 -	Signal for activating the second (safety) setpoint (SP.2=) W 2. Note: Setpoint W 2 is not restricted by the setpoint limits!

7 LOGI								
- Signal								
Name	r/w	Adr. In	eger	real	Typ	Value/of		Description
Wi_We		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1082 \\ & 9274 \\ & 17466 \\ & 25658 \end{aligned}$	34932	Int	0... 1	\square	Signal for activating the external setpoint value. SP.E is the external setpoint, or dependent on the device and configuration of the setpoint shift.
Y_Y2		base 1 dP 2dP 3 dP	$\begin{aligned} & 1083 \\ & 9275 \\ & 17467 \\ & 25659 \end{aligned}$	34934	Int	0...1	\square	Signal for activating the 2nd output value Y 2 . With selected Y 2 , the output is operated as a positioner.Caution: Do not confuse the parameter ' $f i x e d$ output $Y 2$ ' with the controller output $Y 2$!
Y_Y.E		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1084 \\ 9276 \\ 17468 \\ 25660 \end{gathered}$	34936	Int	0...1	\square	Signal for activating the external positioning value. The controller is operated as positioner.
A-M	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & \hline 1085 \\ & 9277 \\ & 17469 \\ & 25661 \end{aligned}$	34938	Int	0... 1	\square	Signal for activating manual operation. In the manual mode, the controller provides output signals independent of the process.
C.0ff		base 1 dP 2dP 3 dP	$\begin{aligned} & 1086 \\ & 9278 \\ & 17470 \\ & 25662 \end{aligned}$	34940	Int	0...1	\square	Signal for disabling all the controller outputs. Note: Forcing has priority; alarm processing remains active.
L.AM	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & \hline 1087 \\ & 9279 \\ & 17471 \\ & 25663 \end{aligned}$	34942	Int	0...1	\square	Signal for disabling manual operation. Triggers a forced switchover to automatic mode, and disables the front panel A / M key (also if other functions have been assigned to the key).
Err.r		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1088 \\ & 9280 \\ & 17472 \\ & 25664 \end{aligned}$	34944	Int	0... 1	\square	Signal for resetting the entire error list. The error list contains all errors that are reported, e.g. device faults and limit values. It also contains queued as well as stored errors after their correction. The reset acknowledges all errors, whereby queued errors will reappear after the next error detection (measurement).
SSR.Res	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1089 \\ 9281 \\ 17473 \\ 25665 \end{gathered}$	34946	Int	0...1	\square	Reset of the alarm triggered by a solid-state relay (SSR). SSRs are mostly used for frequent switching of heating elements, because they have no mechanical contacts that can wear out. How ever, an unnoticed short circuit could lead to overheating of the machine.
Boost	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1090 \\ & 9282 \\ & 17474 \\ & 25666 \end{aligned}$	34948	Int	0...1	\square	Signal for activating the boost function. The boost function causes a brief setpoint increase, which is used e.g. to clear blocked channels ('frozen' material) in a hot-runner system.
Set1.2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1091 \\ & 9283 \\ & 17475 \\ & 25667 \end{aligned}$	34950	Int	0...1	\square	Switch-over of parameter set. The 2nd parameter set contains one complete set each of Pb (= proportional band), ti (=integral action time), and td (= derivative action time) for heating and for cooling. All other control parameters, such as sw itching duty cycles, are valid for both parameter sets.
Prg.R.S	r/w	$\begin{aligned} & \begin{array}{l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array} \end{aligned}$	$\begin{aligned} & 1092 \\ & 9284 \\ & 17476 \\ & 25668 \end{aligned}$	34952	Int	0...1	\square	Signal for starting the programmer. On units with a simple programmer (only 1 program), a stop immediately causes a reset, followed by a new start. With units that have been defined as program controllers (several programs), the program is stopped, and then continued.

7 LOGI

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
F.Di	r/w	base $1 d P$ $2 d P$ $3 d P$	$\begin{gathered} 1094 \\ 9286 \\ 17478 \\ 25670 \end{gathered}$	34956	Int	0... 7	\square	Forcing of digital inputs. Forcing involves the external operation of at least one input. The instrument takes over this input value (preset value for inputs from a superordinate system, e.g. for a function test.)

Bit 0 Forcing of digital input 1
Bit 1 Forcing of digital input 2
Bit 2 Forcing of digital input 3
Bit 3 Forcing of digital input 4
Bit 4 Forcing of digital input 5

8 ohnE

PAra								
Name	r/w	Adr. Integer real			Typ	Value/off	Description	
Conf	r/w	base 1 dP 2 dP 3 dP	1 8193 16385 24577	32770	Int	0... 2	\square	Start/Stop and abortion of the configuration mode $0=$ End of configuration 1 = Start of configuration 2 =Abort configuration

Hw .Opt	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 200 \\ 8392 \\ 16584 \\ 24776 \end{array}$	33168	Int	0... 65535	\square	
Sw.Op	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 201 \\ 8393 \\ 16585 \\ 24777 \end{array}$	33170	Int	0... 255	\square	Software version XY M ajor and Minor Release (e.g. $21=$ Version 2.1). The software version specifies the firmware in the unit. For the correct interaction of E-Tool and device, it must match the operating version (OpVersion) in the E-Tool.
Bed.V	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 202 \\ 8394 \\ 16586 \\ 24778 \end{array}$	33172	Int	0... 255	\square	Operating version (numeric value). For the correct interaction of E -Tool and device, the softw are version and operating version must match.
Unit	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 203 \\ 8395 \\ 16587 \\ 24779 \end{array}$	33174	Int	0... 255	\square	Identification of the device.

ohnE

Signa

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
S.Vers	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 204 \\ 8396 \\ 16588 \\ 24780 \end{array}$	33176	Int	100... 255	\square	The sub-version number is given as an additional index for precise definition of software version.
Uident	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 910 \\ 9102 \\ 17294 \\ 25486 \end{array}$	34588	Text	\ldots	\square	Device identification. Via this M odbus address, up to 14 data units (28 bytes) can be defined. Bytes 1-15 order number of the device Bytes 16-19 Ident number 1 Bytes $20+21$ Ident number 2 Bytes 22-25 OEM number Bytes 26-28 Software order number
St.Ala	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 250 \\ 8442 \\ 16634 \\ 24826 \end{array}$	33268	Int	0... 31	\square	Alarm status: Bit-wise coded status of the individual alarms, e.g. exceeded limit value or Loop.

Bit 0 Existing/stored exceeded limit 1
Bit 1 Existing/stored exceeded limit 2
Bit 2 Existing/stored exceeded limit 3
Bit 3 Not used
Bit 4 Existing/stored loop alarm
Bit 5 Existing/stored heating current alarm
Bit 6 Existing/stored SSR alarm
Bit 7 Not used
Bit 8 Existing exceeded limit 1
Bit 9 Existing exceeded limit 2
Bit 10 Existing exceeded limit 3
Bit 11 Not used
Bit 12 Existing loop alarm
Bit 13 Existing heating current alarm
Bit 14 Existing SSR alarm
Bit 15 Not used

St.Do	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	251 8443 16635 24827	33270	Int	0... 31	\square	Status of the digital outputs Bit 0 digital output 1 Bit 1 digital output 2 Bit 2 digital output 3 Bit 3 digital output 4 Bit 4 digital output 5 Bit 5 digital output 6

8 ohnE

Signal

Name	r/w	Adr. Integer		real	Typ	Value/off		Description
St.Ain	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 252 \\ 8444 \\ 16636 \\ 24828 \end{array}$	33272	Int	0... 7	\square	Bit-coded status of the analog input (fault, e.g. short circuit)

Bit 0 Break at Input 1
Bit 1 Reversed polarity at Input 1
Bit 2 Short circuit at Input 1
Bit 3 Not used
Bit 4 Break at Input 2
Bit 5 Reversed polarity at Input 2
Bit 6 Short-circuit at Input 2
Bit 7 Not used
Bit 8 Break at Input 3 (only KS 90)
Bit 9 Reversed polarity at Input 3 (only KS 90)
Bit 10 Short-circuit at Input 3 (only KS 90)
Bit 11 Not used

St.Di	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 253 \\ 8445 \\ 16637 \\ 24829 \end{array}$	33274	Int	0... 7	\square	Status of the digital inputs or of push-buttons (binary coded).

Bit 0 Input 1
Bit 1 Input 2
Bit 2 Input 3
Bit 8 Status of ' F ' key
Bit 9 Status of 'A/M ' key
Bit 10 Status of 'Sel' key
Bit 11 Status of 'Down' key
Bit 12 Status of 'Up' key
Bit 13 Status of 'Loc' key

F.Di	r/w	base	303	33374	Int	$0 \ldots 1$	\square
					Forcing of digital inputs. Forcing involves the external operation of at least one input. The instrument takes over this input value (preset value for inputs from a superordinate system, e.g. for a		
2dP	16687						
function test.)							

Bit 0 Forcing of digital input 1
Bit 1 Forcing of digital input 2
Bit 2 Forcing of digital input 3
Bit 3 Forcing of digital input 4
Bit 4 Forcing of digital input 5

F.Do	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 304 \\ 8496 \\ 16688 \\ 24880 \end{array}$	33376	Int	0... 15	\square	Forcing of digital outputs. Forcing involves the external operation of at least one output. The instrument has no influence on this output (use of free outputs by superordinate system).

9 ohnE1

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
In. 1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 232 \\ 8424 \\ 16616 \\ 24808 \end{array}$	33232	Float	-1999... 9999	\square	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
In.1r	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 240 \\ 8432 \\ 16624 \\ 24816 \end{array}$	33248	Float	-1999... 9999	\square	M easurement value before the measurement value correction (unprocessed).
F.Inp		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 300 \\ 8492 \\ 16684 \\ 24876 \end{array}$	33368	Float	-1999... 9999	\square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

10 ohnE2

Signal								
Name	r/w	Adr.	teger	real	Typ	Value/off		Description
In. 2		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 233 \\ 8425 \\ 16617 \\ 24809 \end{array}$	33234	Float	-1999...9999	\square	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
In.2r	r	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 241 \\ 8433 \\ 16625 \\ 24817 \end{array}$	33250	Float	-1999...9999	\square	M easurement value before the measurement value correction (unprocessed).
F.Inp	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 301 \\ 8493 \\ 16685 \\ 24877 \end{array}$	33370	Float	-1999...9999	\square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

11 ohnE3

Signa								
Name	r/w	Adr.	ger	real	Typ	Value/off		Description
F.Out1	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 305 \\ 8497 \\ 16689 \\ 24881 \end{array}$	33378	Float	0... 120	\square	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

12 othr
 Con=

F.Coff	r/w	base $1 d P$ $2 d P$ $3 d P$	192 8384 16576 24768	33152	Enum	Enum_Coff		The standard disabling procedure only switches off the controller outputs, whereby the alarms, displays, and other functions remain active. Alternatively, all functions can be switched off (including alarms and displays).
						0 va e.	Only the PID controller functions are disabled. The analog controller outputs have the value 0.0 , and the switching outputs generate the logical state FALSE. All other functions, e.g. alarms and displays, continue operating in the normal manner.	
						1 A	All the controller functions are disabled. The analog outputs have the value 0.0 , and the switching outputs generate the logical state FALSE. If configured, an inversion is carried out.	

dELY	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 183 \\ 8375 \\ 16567 \\ 24759 \end{array}$	33134	Int	0... 200	\square	Response delay [ms] (only visible with OPTION). Additional delay time before the received message may be answ ered on the M odbus. (M ight be necessary, if the same line is used for transmit/receive.)

12 othr

ConF

dP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 171 \\ 8363 \\ 16555 \\ 24747 \end{array}$	33110	Enum	Enum_dP		Decimal point (max. no of decimals). Format of the measured value display.
0 no digit behind the decimal point								
						1 Display has one decimal.		
						2 D	Display has two decimals.	
						3 Display has t		ree decimals.

LEd	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 190 \\ 8382 \\ 16574 \\ 24766 \end{array}$	33148	Enum	Enum_Led		M eaning of the signalling LEDs. Selection of a combination of the displayable signals.
The digital outputs OUT1, OUT2, and OUT3 are displayed.								
						Display of contr		troller output y1 (heating / open), alarm2, and alarm3.
							Display of controller output y1 (heating / open), controller output y2 (cooling / close), larm3	
							Display of controller output y2 (cooling / close), controller output y1 (heating / open), alarm3	
C.dEL	r/w	base 1 dP 2 dP 3 dP	184 8376 16568 24760	33136	Int	0...200 $\quad \square$		For both interfaces, M odbus only. Additional acceptable delay time betw een 2 received bytes, before "end of message" is assumed. This time is needed if data is not transmitted continousely by the modem.
FrEq	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 150 \\ 8342 \\ 16534 \\ 24726 \end{array}$	33068	Enum	Enum_FrEq		Switchover of the applied mains frequency $50 / 60 \mathrm{~Hz}$, thereby better adaptation of the input filter for hum suppression.
$0 \quad M$ ains frequency is 50 Hz .								
						M ains frequency is 60 Hz .		

M ASt	r/w	base 1 dP 2dP 3 dP	185 8377 16569 24761	33138	Enum	Enum_M ASt		Device works as M odbus master. The communication is executed according to the master/slave principle, whereby the device can be operated as master or as slave. Operation as master must be configured here.
						$0 \quad \mathrm{No}$, the unit is		operated as a M odbus slave.
						1 Yes, the unit is operated as a M odbus master.		
Cycl	r/w	base	186	33140	Int	0... 200	\square	Cycle time (in seconds) during which the M odbus master transmits its message on the bus.
		1 dP	8378					
		2dP	16570					
		3 dP	24762					

12 othr
 Con=

Name	r/w	Adr. Integer		real	Typ	Value/off		Description
AdrO	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 187 \\ 8379 \\ 16571 \\ 24763 \end{array}$	33142	Int	1... 65535	\square	Target address to which the data specified with AdrU are output on the bus.
AdrU	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 188 \\ 8380 \\ 16572 \\ 24764 \end{array}$	33144	Int	1... 65535	\square	M odbus address of the data output on the bus by the M odbus master.
Numb	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 189 \\ 8381 \\ 16573 \\ 24765 \end{array}$	33146	Int	0... 100	\square	Quantity of data that are to be transmitted from the M odbus master.

Sfona									
Name	r/w	Adr. In	eger	real	Typ	Value/off		Description	
E. 1	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 210 \\ 8402 \\ 16594 \\ 24786 \end{array}$	33188	Enum	Defect		Err 1 (internal error) Contact Service.	
$0 \quad$ No fault exists (Reset).									
							The device is defective.		
E. 2	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 211 \\ 8403 \\ 16595 \\ 24787 \end{array}$	33190	Enum	Problem		Err 2 (internal error, resettable) (As a process value via fieldbus interface not writable!)	
						01	No fault, resetting possible (Reset).		
							A fault has occurred and has been stored.		
FbF. 1	r/w	\|l	l $\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP}\end{aligned}$	212 8404 16596 24788	33192	Enum	Break		Sensor break at input INP1. Typical causes and suggested remedies: Sensor fault: replace INP1 sensor. W iring fault: check connections of INP1. (As a process value via fieldbus interface not writable!)
						01	No fault, resetting of the sensor break alarm possible (Reset).		
							The sensor fault alarm has been triggered and stored; the fault is no longer present. The operator must acknow ledge the error message in order to delete it from the error list.		
						2	Sensor break: The sensor is defective or there is a wiring fault.		
Sht. 1	r/w	$\left\lvert\, \begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP}\end{aligned}\right.$	213 8405 16597 24789	33194	Enum	Short		Short circuit at input INP1. Typical causes and suggested remedies: Sensor fault: replace INP1 sensor. W iring fault: check connections of INP1. (As a process value via fieldbus interface not writable!)	
						0 No fault,		resetting of the short-circuit alarm possible (Reset).	
						1	A short-circuit fault has occurred and has been stored.		
							A short-circuit fault has occurred.		

12 othr

Signal

12 othr

Signal

12 othr

Signal

Name	r/w	Adr. Integer		real 33212	Typ	Value/off		Description	
AdA.C	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	222 8414 16606 24798	33212	Enum	Tune		Error messag tuning attemp Hints for trou loop closed? step output for (As a process	from "cooling" self-tuning and reason for aborted t. le-shooting: Check operating sense of actuator. Is the Is there an output limit? Adapt the setpoint. Increase Yopt. value via fieldbus interface not writable!)
0 no error									
						$3 \quad \begin{aligned} & \text { P } \\ & \\ & \\ & \\ & \\ & \end{aligned}$	Process responds in the wrong direction. Possible remedy: Check the output signal sense (inverse «> direct), and re-configure the controller if necessary (inverse <-> direct).		
						$4 \quad \mathrm{~N}$	No response from the process. Perhaps the control loop is open. Possible remedy: Check sensor, connections, and process.		
						$5 \quad \begin{aligned} & \text { T } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { Y } \\ & \text { Y }\end{aligned}$	The process value turning point of the step response is too low. Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').		
						$6 \quad$ S	Self-tuning was aborted due to the risk of an exceeded setpoint. Possible remedy: Repeat the attempt with an increased setpoint reserve.		
						$7 \quad \begin{array}{ll}\text { 7 } \\ & \text { P } \\ & \text { Y } \\ & \text { Y }\end{array}$	The step output change is not large enough (minimum change $>5 \%$). Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').		
						$8 \quad \mathrm{~S}$	Setpoint reserve must be given before generating the step output change. Possible remedy: decrease set-point range, change set-point, or change process value.		
						$9 \quad \begin{aligned} & \text { Ther } \\ & \\ & \\ & \\ & \end{aligned}$	The pulse response attempt has failed. No useful parameters were determined. Perhaps the control loop is open. Possible remedy: Check sensor, connections, and process.		

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 223 \\ 8415 \\ 16607 \\ 24799 \end{array}$	33214	Enum	Limit		Limit value 1 exceeded. Hint for trouble-shooting: check the process. (As a process value via fieldbus interface not writable!)
						0	No fault,	resetting of the limit value alarm possible (Reset).
						1	The limit	has been exceeded, and the fault has been stored.
						2	The limit limits.	has been exceeded; the monitored (measurement) value is outside the set

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 224 \\ 8416 \\ 16608 \\ 24800 \end{array}$	33216	Enum	Limit		Limit value 2 exceeded. Hint for trouble-shooting: check the process. (As a process value via fieldbus interface not writable!)
						0	No fault,	resetting of the limit value alarm possible (Reset).
						1	The limit	has been exceeded, and the fault has been stored.
						2	The limit limits.	has been exceeded; the monitored (measurement) value is outside the set

12 othr

- Signal

Name	r/w r/w	Adr. Integer		real	Typ	Value		Description
InF. 1		base 1dP 2 dP 3 dP	$\begin{array}{r} 226 \\ 8418 \\ 16610 \\ 24802 \end{array}$	33220	Enum	Time		M essage from the operating hours counter that the preset no. of hours for this maintenance period has been reached. The op-hours counter for the maintenance period is reset when this message is acknow ledged. Counting the operating hours is used for preventive maintenance. - Acknow ledge the error to reset it. (As a process value via fieldbus interface not writable!)
						0	No signal,	resetting of the time limit signal possible (Reset).
						1	Operating	rs - limit value (maintenance period) reached: please acknow ledge.

InF. 2	r/w		227 8419 16611 24803	33222	Enum	Switch		M essage from the switching cycle counter that the preset no. of switch cycles for this maintenance period has been reached. The cycle counter for the maintenance period is reset when this message is acknowledged. Counting the switching cycles is used for preventive maintenance. - Acknow ledge the error to reset it. (As a process value via fieldbus interface not writable!)
0 No error message, resetting of the switching cycle counter possible (Reset). 1 Set limit of the switching cycle counter (maintenance period) has been reached: please acknow ledge.								

13 Out. 1

ConF

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
Y. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4152 \\ 12344 \\ 20536 \\ 28728 \end{array}$	41072	Enum	Enum_ Y2	Output function: Controller output Y2. Caution: Do not confuse the controller output Y2 with the parameter 'Fixed output Y2' !
0 not active							
						$1 \quad$ This output provides the controller output Y2.	

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4153 \\ 12345 \\ 20537 \\ 28729 \end{array}$	41074	Enum	Enum_Lim1	Output function: Signal limit 1
0 not active 1 The output is activated by an alarm from limit value							

13 Out. 1

ConF

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
P .End	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 4161 \\ 12353 \\ 20545 \\ 28737 \end{array}$	41090	Enum	Enum_PEnd	Output function: Signal Program end. This message is available when the program has been completed (only when configured as a program controller).
0 not active							
						1 This output is activated by the message 'Program end'.	

14 Out. 2

ConF

Y. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4252 \\ 12444 \\ 20636 \\ 28828 \end{array}$	41272	Enum	Enum_Y2		Output function: Controller output Y2. Caution: Do not confuse the controller output Y2 with the parameter 'Fixed output Y2' !
0 not active								
						1 T	This output provides the controller output Y2.	

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4253 \\ 12445 \\ 20637 \\ 28829 \end{array}$	41274	Enum	Enum_Lim1	Output function: Signal limit 1
0 not active 1 The output is activated by an alarm from limit value 1.							

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4254 \\ 12446 \\ 20638 \\ 28830 \end{array}$	41276	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit value 2.							

LP .AL	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 4257 \\ 12449 \\ 20641 \\ 28833 \end{array}$	41282	Enum	Enum_OUT_LPAL	Output function: Signal Interruption alarm (LOOP) The overall control loop is monitored and the process value has to change with an output signal of maximum value, else loop alarm is generated.
0 not active							
						1 The loop alarm (=open loop alarm) is assigned to this output.	

14 Out. 2

ConF

$\begin{aligned} & \text { Name } \\ & \text { HC.AL } \end{aligned}$	r/w	Adr. Integer		real	Typ	Value/off	Description
	r/w	base 1 dPP 2 dP 3 dP	$\begin{array}{r} 4258 \\ 12450 \\ 20642 \\ 28834 \end{array}$	41284	Enum	Enum_OUT_HCAL	Output function: Signal Heat current alarm. Either break (=current I <heating current limit) can be monitored or overload (=current I > heating current limit), dependent on configuration.
0 not active							
						1 The heating current alarm is assigned to this output.	

P.End	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4261 \\ 12453 \\ 20645 \\ 28837 \end{array}$	41290	Enum	Enum_PEnd	Output function: Signal Program end. This message is available when the program has been completed (only when configured as a program controller).
						0 not	not active
						1 Th	This output is activated by the message 'Program end'.

Signal

14 Out. 2

Signa

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
F.Do2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4281 \\ 12473 \\ 20665 \\ 28857 \end{array}$	41330	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
0 off							
1 on							

15 Out. 3

O.Act	r/w	base 1 dPP 2 dP 3 dP	$\begin{array}{r} 4350 \\ 12542 \\ 20734 \\ 28926 \end{array}$	41468	Enum	Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) switches the output OFF.
0 direct / normally open							
						1 inverse / normally closed	
Y. 1	r/w	base 1dP 2dP 3dP	$\begin{array}{r} 4351 \\ 12543 \\ 20735 \\ 28927 \end{array}$	41470	Enum	Enum_Y1	Output function: Controller output Y1
0 not active							
						1 This	This output provides the controller output Y1.
Y. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4352 \\ 12544 \\ 20736 \\ 28928 \end{array}$	41472	Enum	Enum_Y2	Output function: Controller output Y2. Caution: Do not confuse the controller output Y2 with the parameter 'Fixed output Y2' !
						0 not active	
						1 This output provides the controller output Y2.	

15 Out. 3

ConF

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4354 \\ 12546 \\ 20738 \\ 28930 \end{array}$	41476	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit value 2.							

15 Out. 3

ConF

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
FAi. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4362 \\ 12554 \\ 20746 \\ 28938 \end{array}$	41492	Enum	Enum_FAi1	Output function: Signal INP1 fault. The fail signal is generated, if a fault occurs at the analog Input INP1.
0 not active							
						1 The output sends the error message 'INP1 fault'.	

Out.0	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 4371 \\ 12563 \\ 20755 \\ 28947 \end{array}$	41510	Float	-1999...9999 \square	Lower scaling limit of the analog output (corresponds to 0\%). If current and voltage signals are used as output values, the display can be scaled to the output value in the Parameter Level. The output value of the lower scaling point is indicated in the respective electrical unit (mA / V).
Out. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4372 \\ 12564 \\ 20756 \\ 28948 \end{array}$	41512	Float	-1999...9999 \square	Upper scaling limit of the analog output (corresponds to 100%). If current and voltage signals are used as output values, the display can be scaled to the output value in the Parameter Level. The output value of the upper scaling point is indicated in the respective electrical unit (mA / V).
0.Src	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4373 \\ 12565 \\ 20757 \\ 28949 \end{array}$	41514	Enum	Enum_OSrc	Signal source of the analog output (visible not with all output signal types 0.TYP).
0 not used							
						1 Controller output y1 (continuous)	
						Controller output y2 (continuous)	
						process value	
						The effective setpoint W eff, which is used for control. Example: The gradient changes the effective setpoint until it reaches the internal (target) setpoint.	
						control deviation xw (process value - set-point)= relative alarm Note: M onitoring with the effective set-point W eff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.	

Sfona							
Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
Out1	r	base	4380	41528	Enum	Enum_Ausgang	Status of the digital output
		1 dP	12572				
		2 dP	20764				
		3 dP	28956				
						0 off	
						1 on	

15 Out. 3

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
F.Do1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4381 \\ 12573 \\ 20765 \\ 28957 \end{array}$	41530	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
						$\begin{array}{ll} 0 & \text { off } \\ 1 & \text { on } \end{array}$	

F.Out1	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 4382 \\ 12574 \\ 20766 \\ 28958 \end{array}$	41532	Float	0... 120	\square	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

16 Out. 5

ConF

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
O.Act	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4550 \\ 12742 \\ 20934 \\ 29126 \end{array}$	41868	Enum	Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) sw itches the output OFF,
						0 dire	ly open
						1 inve	ally closed

16 Out. 5
ConF

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4555 \\ 12747 \\ 20939 \\ 29131 \end{array}$	41878	Enum	Enum_Lim3	Output function: Signal limit 3
0 not active 1 The output is activated by an alarm from limit value 3.							

HC.AL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4558 \\ 12750 \\ 20942 \\ 29134 \end{array}$	41884	Enum	Enum_OUT_HCAL	Output function: Signal Heat current alarm. Either break (=current I < heating current limit) can be monitored or overload (=current I > heating current limit), dependent on configuration.
0 not active							
						1 The heating current alarm is assigned to this output.	

ConF

Name FAi. 2	r/w	Adr. Integer		real	Typ	Value/off Description	
	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4563 \\ 12755 \\ 20947 \\ 29139 \end{array}$	41894	Enum	Enum_FAi2	Output function: Signal INP2 fault. The fail signal is generated, if a fault occurs at the analog Input IN P2.
0 not active							
						1 Th	The output sends the error message 'INP2 fault'.

17 Out. 6

ConF

17 Out. 6

ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
Y. 2	r/w	base $1 d P$ $2 d P$ 3 dP	$\begin{array}{r} 4652 \\ 12844 \\ 21036 \\ 29228 \end{array}$	42072	Enum	Enum_Y2	Output function: Controller output Y2. Caution: Do not confuse the controller output $Y 2$ with the parameter 'Fixed output Y2' !
0 not active							
						1 This output provides the controller output Y2.	

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4653 \\ 12845 \\ 21037 \\ 29229 \end{array}$	42074	Enum	Enum_Lim1	Output function: Signal limit 1
0 not active 1 The output is activated by an alarm from limit value							

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4655 \\ 12847 \\ 21039 \\ 29231 \end{array}$	42078	Enum	Enum_Lim3	Output function: Signal limit 3
0 not active 1 The output is activated by an alarm from limit value 3.							

17 Out. 6

ConF

Name P.End	r/w	Adr. Integer		real	Typ	Value/off Description	
	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4661 \\ 12853 \\ 21045 \\ 29237 \end{array}$	42090	Enum	Enum_PEnd	Output function: Signal Program end. This message is available when the program has been completed (only when configured as a program controller).
0 not active							
						1 This output is activated by the message 'Program end'.	

FAi. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} 4662 \\ 12854 \\ 21046 \\ 29238 \end{array}$	42092	Enum	Enum_FAi1	Output function: Signal INP1 fault. The fail signal is generated, if a fault occurs at the analog Input IN P1.
0 not active							
						1 The output sends the error message 'INP1 fault'.	

18 PAr. 2

Para								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
Pb12	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5030 \\ 13222 \\ 21414 \\ 29606 \end{array}$	42828	Float	0,1...9999	\square	Proportional band 1 (heating) in engineering unit (e.g. ${ }^{\circ} \mathrm{C}$) of the 2 nd parameter set. The Pb defines the ratio betw een output value and control deviation. The smaller the value of Pb is, the stronger is the control response for a specific control deviation. Too large and too small values for Pb lead to process oscillations (hunting).
Pb22	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5031 \\ 13223 \\ 21415 \\ 29607 \end{array}$	42830	Float	0,1...9999	\square	Proportional band 2 (cooling) in engineering unit (e.g. ${ }^{\circ} \mathrm{C}$) of the 2 nd parameter set. The Pb defines the ratio betw een output value and control deviation. The smaller the value of Pb is, the stronger is the control response for a specific control deviation. Too large and too small values for Pb lead to process oscillations (hunting).
ti22	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5033 \\ 13225 \\ 21417 \\ 29609 \end{array}$	42834	Float	0... 9999	\square	Integral action time 2 (cooling) [s]. Second parameter set. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
ti12	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5032 \\ 13224 \\ 21416 \\ 29608 \end{array}$	42832	Float	0... 9999	\square	Integral action time 1 (heating) [s]. Second parameter set. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
td12	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5034 \\ 13226 \\ 21418 \\ 29610 \end{array}$	42836	Float	0... 9999	\square	Derivative action time 1 (heating) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.
td22	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5035 \\ 13227 \\ 21419 \\ 29611 \end{array}$	42838	Float	0... 9999	\square	Derivative action time 2 (cooling) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.

19	ProG								
-	PAra								
	Name	r/w	Adr. II	teger	real	Typ	Value/off		Description
	SP. 01	r/w	base 1dP 2dP 3dP	$\begin{array}{r} 6100 \\ 14292 \\ 22484 \\ 30676 \end{array}$	44968	Float	-1999...9999	\square	End setpoint of segment 1. This is the target setpoint that is reached at the end of the first segment. The target setpoint is approached from the previous valid setpoint (when starting the 1st segment, matching to process value!). When the program is completed, the controller continues with the last target setpoint reached.
	Pt. 01	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 6101 \\ 14293 \\ 22485 \\ 30677 \end{array}$	44970	Float	0...9999	\square	Segment time 1 defines the duration of the first segment. The gradient of this segment is calculated using the segment time and the setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.

19 ProG

PArA

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
SP. 02	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6102 \\ 14294 \\ 22486 \\ 30678 \end{array}$	44972	Float	-1999...9999		End setpoint of segment 2. This is the target setpoint that is reached at the end of the second segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 02	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6103 \\ 14295 \\ 22487 \\ 30679 \end{array}$	44974	Float	0... 9999	\square	Segment time 2 defines the duration of the second segment. The gradient of this segment is calculated using the segment time and the setpoint difference (SP - segment starting setpoint).N ote: The 1st segment is started at process value.
SP. 03	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6104 \\ 14296 \\ 22488 \\ 30680 \end{array}$	44976	Float	-1999...9999	\square	End setpoint of segment 3. This is the target setpoint that is reached at the end of the third segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 03	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6105 \\ 14297 \\ 22489 \\ 30681 \end{array}$	44978	Float	0... 9999	\square	Segment time 3 defines the duration of the third segment. The gradient of this segment is calculated using the segment time and the setpoint difference (SP - segment starting setpoint).N ote: The 1st segment is started at process value.
SP. 04	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6106 \\ 14298 \\ 22490 \\ 30682 \end{array}$	44980	Float	-1999...9999	\square	End setpoint of segment 4. This is the target setpoint that is reached at the end of the fourth segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 04	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} 6107 \\ 14299 \\ 22491 \\ 30683 \\ \hline \end{array}$	44982	Float	0... 9999	\square	Segment time 4 defines the duration of the fourth segment. The gradient of this segment is calculated using the segment time and the setpoint difference (SP - segment starting setpoint).N ote: The 1st segment is started at process value.
SP. 05	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6108 \\ 14300 \\ 22492 \\ 30684 \end{array}$	44984	Float	-1999...9999	\square	End setpoint of segment 5. This is the target setpoint that is reached at the end of the fifth segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 05	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6109 \\ 14301 \\ 22493 \\ 30685 \\ \hline \end{array}$	44986	Float	0...9999	\square	Segment time 5 defines the duration of the fifth segment. The gradient of this segment is calculated from segment time and setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.
SP. 06	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 6110 \\ 14302 \\ 22494 \\ 30686 \end{array}$	44988	Float	-1999...9999	\square	End setpoint of segment 6. This is the target setpoint that is reached at the end of the sixth segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 06	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} 6111 \\ 14303 \\ 22495 \\ 30687 \end{array}$	44990	Float	0... 9999	\square	Segment time 6 defines the duration of the sixth segment. The gradient of this segment is calculated from segment time and setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.
SP. 07	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6112 \\ 14304 \\ 22496 \\ 30688 \end{array}$	44992	Float	-1999...9999	\square	End setpoint of segment 7. This is the target setpoint that is reached at the end of the seventh segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.

19 ProG

PArA								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
Pt. 07	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6113 \\ 14305 \\ 22497 \\ 30689 \end{array}$	44994	Float	0... 9999	\square	Segment time 7 defines the duration of the seventh segment. The gradient of this segment is calculated from segment time and setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.
SP. 08	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6114 \\ 14306 \\ 22498 \\ 30690 \end{array}$	44996	Float	-1999...9999	\square	End setpoint of segment 8. This is the target setpoint that is reached at the end of the eighth segment. The target setpoint is approached from the previous valid setpoint. W hen the program is completed, the controller continues with the last target setpoint reached.
Pt. 08	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6115 \\ 14307 \\ 22499 \\ 30691 \end{array}$	44998	Float	0... 9999	\square	Segment time 8 defines the duration of the eighth segment. The gradient of this segment is calculated from segment time and setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.
SP. 09	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6116 \\ 14308 \\ 22500 \\ 30692 \end{array}$	45000	Float	-1999...9999	\square	End setpoint of segment 9. This is the target setpoint that is reached at the end of the ninth segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 09	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6117 \\ 14309 \\ 22501 \\ 30693 \end{array}$	45002	Float	0... 9999	\square	Segment time 9 defines the duration of the ninth segment fest. The gradient of this segment is calculated from segment time and setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.
SP. 10	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6118 \\ 14310 \\ 22502 \\ 30694 \end{array}$	45004	Float	-1999...9999	\square	End setpoint of segment 10. This is the target setpoint that is reached at the end of the tenth segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt. 10	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6119 \\ 14311 \\ 22503 \\ 30695 \end{array}$	45006	Float	0... 9999	\square	Segment time 10 defines the duration of the tenth segment. The gradient of this segment is calculated from segment time and setpoint difference (SP - segment starting setpoint).Note: The 1st segment is started at process value.
b.Lo	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6120 \\ 14312 \\ 22504 \\ 30696 \end{array}$	45008	Float	0... 9999	\square	Lower bandw idth limit. The bandwidth monitor is valid for all segments of an individual program. If the bandwidth is exceeded, the programmer is stopped. The program continues, if the process value returns within the defined monitoring limits.
b. Hi	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6121 \\ 14313 \\ 22505 \\ 30697 \end{array}$	45010	Float	0... 9999	\square	Upper bandw idth limit. The bandwidth monitor is valid for all segments of an individual program. If the bandwidth is exceeded, the programmer is stopped. The program continues, if the process value returns within the defined monitoring limits.

19 ProG

Signal

Name	r/w	Adr. 1	teger	real	Typ	Value/off		Description
St.Prog	r	$\begin{array}{\|l} \hline \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \\ \hline \end{array}$	$\begin{array}{r} 6170 \\ 14362 \\ 22554 \\ 30746 \end{array}$	45108	Int	0...255	\square	The programmer's status contains bit-wise coded data, e.g. which point of the program sequence the program has reached.

Bit 0,1,2 Type of segment
0 : rising
1: falling
2: hold (dwell)
Bit 3 Program 'Run'
Bit 4 Program 'End'
Bit 5 Program 'Reset
Bit 6 Program 'StartFlankM issing'
Bit 7 Program 'BandHold + FailHold'
Bit 8 Program active

SP.Pr	r	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6171 \\ 14363 \\ 22555 \\ 30747 \end{array}$	45110	Float	-1999...9999	\square	The programmer's setpoint is displayed as the effective setpoint while the program is running.
T1.Pr	r	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 6172 \\ 14364 \\ 22556 \\ 30748 \end{array}$	45112	Float	0... 9999	\square	Only with a running program. The net (elapsed) time of the programmer is shown in a simplified form as time elapsed since program start.Caution: Stop times are not counted! If the first segment is defined as a gradient, the program starts at the process value, whereby the offset is defined as the time that the controller would have needed with the gradient beginning at the setpoint valid at program start.
T3.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6173 \\ 14365 \\ 22557 \\ 30749 \end{array}$	45114	Float	0... 9999	\square	Only with running program. The remaining programmer time is given by the sum of the currently running segment plus the times of the remaining program segments (without hold times).
T2.Pr	r	$\begin{array}{\|l} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \end{array}$	$\begin{array}{r} \hline 6174 \\ 14366 \\ 22558 \\ 30750 \end{array}$	45116	Float	0... 9999	\square	Only while program is running. The net segment time corresponds to the elapsed segment time.Caution: Stop times are not counted! the first segment has been defined as a gradient, the start commences at process value, and the offset specified for the first segment corresponds to the time that the controller would have required with a gradient beginning at the actual process value when the program was started.
T4.Pr	r	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6175 \\ 14367 \\ 22559 \\ 30751 \end{array}$	45118	Float	0... 9999	\square	Only with running program. The remaining time of the running program segment (without hold times).
SG.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6176 \\ 14368 \\ 22560 \\ 30752 \end{array}$	45120	Int	$0 . . .4$	\square	A program consists of one or more segments which are arranged and defined by means of the segment numbers. By means of the segment number(s), the program can be changed quickly and specifically at the required point.

20 SEtP

PArA								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
SP.LO	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 3100 \\ 11292 \\ 19484 \\ 27676 \end{array}$	38968	Float	-1999...9999	\square	Lower setpoint limit. The setpoint is raised to this value automatically, if a lower setpoint is adjusted. BUT: The (safety) setpoint W 2 is not restricted by the setpoint limits! The setpoint reserve for the step function is 10% of SPHi - SPLO.
SP.Hi	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 3101 \\ 11293 \\ 19485 \\ 27677 \end{array}$	38970	Float	-1999...9999	\square	Upper setpoint limit. The setpoint is reduced to this value automatically, if a higher setpoint is adjusted. BUT: The (safety) setpoint W 2 is not restricted by the setpoint limits! The setpoint reserve for the step function is 10% of SPHi - SPLO.
SP. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 3102 \\ 11294 \\ 19486 \\ 27678 \\ \hline \end{array}$	38972	Float	-1999...9999	\square	Second (safety) setpoint. Ramp function as with other setpoints (effective, external). However, SP2 is not restricted by the setpoint limits.
r.SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3103 \\ 11295 \\ 19487 \\ 27679 \end{array}$	38974	Float	0,01...9999	\square	Setpoint gradient [/min] or ramp. Max. rate of change in order to avoid step changes of the setpoint. The gradient acts in the positive and negative directions. Note for self-tuning: with activated gradient function, the setpoint gradient is started from the process value, so that there is no sufficient setpoint reserve.
SP.bo		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3105 \\ 11297 \\ 19489 \\ 27681 \end{array}$	38978	Float	-1999...9999	\square	Boost increase. Increases the setpoint SP for the duration t.bo by the amount S P.bo. The boost function causes a brief setpoint increase, which is used e.g. to clear blocked channels ('frozen' material) in a hot-runner system.
t.bo	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3106 \\ 11298 \\ 19490 \\ 27682 \end{array}$	38980	Float	0...9999	\square	Duration of the boost increase in minutes. When the boost time t.bo has elapsed, the controller switches back to the standard setpoint SP. The boost function causes a brief setpoint increase, which is used e.g. to clear blocked channels ('frozen' material) in a hot-runner system.
Y.St	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5023 \\ 13215 \\ 21407 \\ 29599 \end{array}$	42814	Float	-120...120	\square	Reduced output value for start-up [\%]. The start-up function is a protective function, e.g. with hot runner control. To prevent destruction of high-performance heating elements, they must be heated slowly to remove any humidity. With activated start-up function, the controller maintains the reduced starting temperature for a defined dw ell period. Subsequently, the controller switches over to the main setpoint.
SP.St	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3107 \\ 11299 \\ 19491 \\ 27683 \end{array}$	38982	Float	-1999...9999	\square	Setpoint for start-up function. The start-up function is a protective function, e.g. with hot runner control. To prevent destruction of high-performance heating elements, they must be heated slowly to remove any humidity. With activated start-up function, the controller maintains the reduced starting temperature for a defined dwell period. Subsequently, the controller switches over to the main setpoint.
t.St	r/w	base 1dP 2dP 3dP	$\begin{array}{r} 3108 \\ 11300 \\ 19492 \\ 27684 \end{array}$	38984	Float	0...9999	\square	Start-up dwell period [min]. The start-up function is a protective function, e.g. with hot runner control. To prevent destruction of high-performance heating elements, they must be heated slowly to remove any humidity. With activated start-up function, the controller maintains the reduced starting temperature for a defined dwell period. Subsequently, the controller switches over to the main setpoint.

20 SEtP

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
SP.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3170 \\ 11362 \\ 19554 \\ 27746 \end{array}$	39108	Float	-1999...9999 \square	Effective setpoint. The value reached at the end of setpoint processing, after taking W 2, external setpoint, gradient, boost function, programmer settings, start-up function, and limit functions into account. Comparison with the effective process value leads to the control deviation, from which the necessary controller response is derived.
Diff	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3171 \\ 11363 \\ 19555 \\ 27747 \end{array}$	39110	Float	-1999...9999 \square	Difference between the effective setpoint and setpoint 2.
SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3180 \\ 11372 \\ 19564 \\ 27756 \end{array}$	39128	Float	-1999...9999 \square	Setpoint for the interface (without the additional function 'Controller off'). SetpInterface acts on the internal setpoint before the setpoint processing stage. Note: The value in RAM is always updated. To protect the EEPROM, storage of the value in the EEPROM is timed (at least one value per half hour).
SP.d	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3181 \\ 11373 \\ 19565 \\ 27757 \end{array}$	39130	Float	-1999...9999 $\quad \square$	The effective setpoint is shifted by this value. In this way, the setpoints of several controllers can be shifted together, regardless of the individually adjusted effective setpoints.

21 Tool

Con=							
Name	r/w	Adr. Integer		real	Typ	Value/off	Description
U.LinT	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 634 \\ 8826 \\ 17018 \\ 25210 \\ \hline \end{array}$	34036	Enum	Enum_Unit	Engineering unit of linearization table (temperature).
						$\begin{array}{ll} 0 & \text { wi } \\ 1 & { }^{\circ} \mathrm{C} \\ 2 & { }^{\circ} \mathrm{F} \end{array}$	

Code Table

Table Of Contents

1 Cntr

ConF 1
PAr 3
Signal 6
2 InP. 1
ConF 12
PAr 14
3 InP. 2
ConF 15
Signal 15
PAr 16
Signal 17
4 InP. 3
ConF 18
PAr 20
5 Lim
ConF 21
Signal 21
PAr 23
Signal 23
6 Lim2
ConF 24
PAr 24
Signal 25
7 Lim3
ConF 25
PAr 26
Signal 27
8 LOG
ConF 27
Signal 30
9 ohn
ConF 32
PAr 34
Signal 35
10 ohn=1.
Signal 37
11 ohn=2
Signal 38
12 ohn $=3$
Signal 38
13 ohnE4
Signal 38
14 othr
ConF 39
Signal 41
15 Out. 1
ConF 47
Signal 50
16 Out. 2
ConF 50
Signal 53
17 Out. 3
ConF 54
Signal 57
18 Out. 4
ConF 58
19 Out. 5
ConF 62
Signal 62
Signal 65
20 Out. 6
ConF 65
Signal 68

Table Of Contents

21 PAr. 2
PAr 69
22 ProG
ConF 69
PAr 70
Signal 87
23 SEtp
PAr 88
Signal 88
24 Tool
ConF 89

FAIL	r/w	base $1 d P$ $2 d P$ $3 d P$	$\begin{array}{r} 5053 \\ 13245 \\ 21437 \\ 29629 \end{array}$	42874	Enum	Enum_FAlL		W ith the sensor break response, the operator determines the instrument's reaction to a sensor break, thus ensuring a safe process condition.
						0 controller outputs switched off		
						$\begin{aligned} & \mathrm{y} \\ & \mathrm{NC} \\ & 0 . \mathrm{C} \\ & \mathrm{NC} \\ & \text { un } \end{aligned}$	y = parameter Y2 (Caution: fixed parameter Y2, not controller output Y2!). Note for three-point stepping controller: W ith Y2 <0.01 CLOSED is set (DY=-100\%), with $0.01=<Y 2=<99.9$ no output is set ($D Y=0 \%$), with $Y 2>99.9$ OPEN is set ($D Y=+100 \%$). Note for signallers: With $\mathrm{Y} 2<0.01$ OFF is set, with $0.01=<\mathrm{Y} 2=<99.9$ status keeps unchanged, with $\mathrm{Y} 2>99.90 \mathrm{~N}$ is set.	
						y T		ut. The maximum permissible output can be adjusted with parameter Ym.H. ermination of inadmissible values, mean value formation is only if the ion is lower than parameter L.Ym.

Strt	r/w	base 1 dP 2dP 3 dP	5057 13249 21441 29633	42882	Enum	Enum_Strt	Start of self-tuning. Self-tuning can always be started manually at the request of the operator. Here, it is possible to determine that self-tuning is started automatically under the following conditions: On pow er-up or when an oscillation of the process value is detected.
0 no automatic start (manual start via front interface) 1 M anual or automatic start of auto-tuning at power on or when oscillating is detected (oscillating of process value by more than $\pm 0.5 \%$ of the control range, and simultaneously the output value by more than 20\%.) Note: Though the process is unchanged, at power on always the (time-consuming) auto-tuning is started. and							

Adt0	r/w	base 1 dP 2dP 3 dP	5061 13253 21445 29637	42890	Enum	Enum_Adt0		Optimization of the switching cycles $t 1$ and t2 for the DED conversion can be disabled here. In order to fine-tune the positioning action, the switching periods are changed by the self-tuning function, if automatic tuning is configured.
						0 The	The cycle duration is determinated by auto-tuning. Thereby the best controlling results are obtained.	
						Th bad whic	The cycle duration is not determinated by auto-tuning. An oversized cycle duration causes bad control behavior. An undersized cycle duration causes a more frequent switching, which can raise the wearout of mechanical actuators (relay, contactor).	

PArA								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
Pb1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5000 \\ 13192 \\ 21384 \\ 29576 \end{array}$	42768	Float	1...	\square	Proportional band 1 (heating) in engineering unit, e.g. ${ }^{\circ} \mathrm{C}$. Pb defines the relationship betw een controller output and control deviation. The smaller Pb is, the stronger is the control action for a given control deviation. If Pb is too large or too small, the control loop will oscillate (hunting).
Pb2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5001 \\ 13193 \\ 21385 \\ 29577 \end{array}$	42770	Float	1...	\square	Proportional band 2 (cooling) in engineering units, e.g. ${ }^{\circ} \mathrm{C}$. Pb defines the relationship betw een controller output and control deviation. The smaller Pb is, the stronger is the control action for a given control deviation. If Pb is too large or too small, the control loop will oscillate (hunting).

Cntr								
PArA								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
ti1	r/w		5002 13194 21386 29578	42772	Float	1...	\square	Integral action time 1 (heating) [s]. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
ti2	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 5003 \\ 13195 \\ 21387 \\ 29579 \end{array}$	42774	Float	1...	\square	Integral action time 2 (cooling) [s]. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
td1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5004 \\ 13196 \\ 21388 \\ 29580 \end{array}$	42776	Float	1...	\square	Derivative action time 1 (heating) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.
td2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5005 \\ 13197 \\ 21389 \\ 29581 \end{array}$	42778	Float	1...	\square	Derivative action time 2 (cooling) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.
t1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5006 \\ 13198 \\ 21390 \\ 29582 \end{array}$	42780	Float	0,4...	\square	M inimum duty cycle 1 (heating) [s]. With the standard duty cycle converter, the shortest pulse duration is $1 / 4 \mathrm{xt1}$. If the duty cycle is not to be optimized, this must be entered in the configuration. (Default: Optimization of the duty cycle during self-tuning, but also if the output value is less than 5%).
t2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5007 \\ 13199 \\ 21391 \\ 29583 \end{array}$	42782	Float	0,4...	\square	M inimum duty cycle 2 (cooling) [s]. W ith the standard duty cycle converter, the shortest pulse duration is $1 / 4 \mathrm{xt1}$. If the duty cycle is not to be optimized, this must be entered in the configuration. (Default: Optimization of the duty cycle during self-tuning, but also if the output value is less than 5%).
SH	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5014 \\ 13206 \\ 21398 \\ 29590 \end{array}$	42796	Float	0...	\square	Neutral zone, or switching difference of the signaller [engineering unit].Too small: unnecessarily high switching frequency.Too large: reduced controller sensitivity.W ith 3-point controllers this slows dow n the direct transition from heating to cooling. With 3-point stepping controllers, it reduces the switching operations of the actuator around setpoint.
d.SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5016 \\ 13208 \\ 21400 \\ 29592 \end{array}$	42800	Float	-1 ...	\square	Separation of the D / Y switch-over point from the setpoint [engineering unit]. W ith a significant control deviation heating start is in delta connection. When the control deviation increases, the instrument switches over to reduced power (Y connection) for line-out to the set-point.
tP	r/w	base 1dP 2dP 3dP	$\begin{array}{r} 5009 \\ 13201 \\ 21393 \\ 29585 \end{array}$	42786	Float	0,1...	\square	M inimum pulse duration [s]. Used for switching with constant periods. For positioning values that require a shorter pulse than adjusted for 'tp', the output is suppressed, but 'remembered'. The controller continues adding the internal short pulses until a value equal to 'tp' can be output.

1 Cntr								
PAra								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
t		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5015 \\ 13207 \\ 21399 \\ 29591 \end{array}$	42798	Float	3...	\square	Travel time of the actuator motor [s]. If no feedback signal is available, the controller calculates the actuator position by means of an integrator and the adjusted motor travel time. For this reason, a precise definition of the motor travel time betw een min and max (0% and 100%) is important.
Y.Lo		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5018 \\ 13210 \\ 21402 \\ 29594 \end{array}$	42804	Float	-105... 105	\square	Lower output limit [\%] The range is depedant of the type of controller: 2 point controller: 0...ymax+1 3 point controller: -105 ymax-1
Y.Hi		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} 5019 \\ 13211 \\ 21403 \\ 29595 \end{array}$	42806	Float	-105... 105	\square	Upper output limit [\%] The range is ymin +1 105
Y2		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5017 \\ 13209 \\ 21401 \\ 29593 \end{array}$	42802	Float	-100... 100	\square	Second positioning value [\%]. Activated $\mathrm{Y} 2=$ positioner control. Caution: The parameter 'positioning output Y2' must not be confused with the controller output Y 2!
Y. 0		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5020 \\ 13212 \\ 21404 \\ 29596 \end{array}$	42808	Float	-105... 105	\square	Offset for die positioning value [\%]. This is added to the controller output, and has the most effect with P and PD controllers. (W ith PID controllers, the effect is compensated by the integral action.) W ith a control deviation $=0$, the P controller generates a control output YO.
Ym.H		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5021 \\ 13213 \\ 21405 \\ 29597 \end{array}$	42810	Float	-105... 105	\square	Limit for the mean control output value Ym in case of sensor break [\%]. The mean control output value is configurable as the response to sensor break. The maximum mean output value $=$ YmH.
L.Ym	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5022 \\ 13214 \\ 21406 \\ 29598 \end{array}$	42812	Float	1...	\square	Max. control deviation (xw), at the start of mean value calculation [engineering unit]. When calculating the mean value, data are only taken into account if the control deviation is small enough. 'Lym' is a preset value that determines how precisely the calculated output value is matched to the setpoint.
ofFS		$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5024 \\ 13216 \\ 21408 \\ 29600 \end{array}$	42816	Float	-120...120	\square	Zero point for ratio control. For a given value of X2 (e.g. airflow quantity) the ratio controller changes the corresponding value of XI (e.g. gas flow quantity), until the required ratio is reached.
HYS.L	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5028 \\ 13220 \\ 21412 \\ 29604 \end{array}$	42824	Float	0...	\square	Switching hysteresis below the setpoint of the signaller [engineering unit].
HYS.H	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5029 \\ 13221 \\ 21413 \\ 29605 \end{array}$	42826	Float	0...	\square	Switching hysteresis above the setpoint of the signaller [engineering unit].

1 Cntr

Signal

1 Cntr

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Cntr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5100 \\ 13292 \\ 21484 \\ 29676 \end{array}$	42968	Int	0... 65535	\square	Status informations of the controller.f.e. switching signals, controller off or informations about selftuning. The controller sratus shows the actual adjustments of the controller.

Bit 0: Sw itching signal heating: 0: off 1: on
Bit 1: Switching signal cooling: 0: off 1: on
Bit 2: Sensor error 0: ok 1: error
Bit 3: Controlsignal: M anual/automatic 0 : automatic 1: manual
Bit 4: Controlsignal: Y2
$0: Y 2$ not activ $1: Y 2$ activ
Bit 5: Controlsignal: Ext. setting of outputsignal
0 : not activ 1: activ
Bit 6: Controlsignal: Controller off 0 : contr. on 1: contr. off
Bit 7: Controlsignal:The activ parameter set
0: parameterset 1
1: parameterset 2
Bit 8: Loopalarm
0: no alarm
1: alarm
Bit 9: Soft start function
0 : not activ
1: activ
Bit 10: Rate to setpoint
0 : not activ
1: activ
Bit 11: Not used
Bit 12-15: Internal functional statuses (operating state)
0000 Automatic
0001 Selftuning is running
0010 Selftuning faulty (Waiting for operator signal)
0011 Sensor error
0100 Not used
0101 Manual
0111 Not used
1000 M anual, with external presetting of the outputsignal
1001 Outputs switched off (neutral)
1010 Abortion of the selftuning (by control-or error-signal)

diFF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5104 \\ 13296 \\ 21488 \\ 29680 \end{array}$	42976	Float	-1 ...	\square	Control deviation, is defined as process value minus setpoint. Positive Xw means that the process value is above the setpoint. A small control deviation indicates precise control.
POS	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5105 \\ 13297 \\ 21489 \\ 29681 \end{array}$	42978	Float	0... 100	\square	The position feedback Yp shows the actuator position with 3-point stepping controllers. If $Y p$ is outside the limits Y min and $Y \max$, the output of positioning pulses is suppressed.
Tu1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5141 \\ 13333 \\ 21525 \\ 29717 \end{array}$	43050	Float	0...	\square	'Heating' delay time of the loop. Tu is calculated by the self-tuning function: It is the time delay before the process reacts significantly. In effect, Tu is a dead time that is determined by the reaction of the process to a change of the control output. It is used for defining controller action.

\section*{1 Cntr
 Signal

Yman	r/w	base 1dP 2dP 3dP	$\begin{array}{r} 5151 \\ 13343 \\ 21535 \\ 29727 \end{array}$	43070	Float	-110... 110	\square	Absolute preset output value, which is used as output value during manual operation. Caution: W ith 3-point stepping controllers, Yman (evaluated the same as Dyman) is added to the actual output value as a relative shift.
dYman	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5152 \\ 13344 \\ 21536 \\ 29728 \end{array}$	43072	Float	-220... 220	\square	Differential preset output value, which is added to the actual output value during manual operation. Negative values reduce the output.
Yinc	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5153 \\ 13345 \\ 21537 \\ 29729 \end{array}$	43074	Enum	Enum_YInc		Increasing the output value. There are two speeds: 40 s or 10 s for the change from 0% to 100%. Note: The 3-point stepping controller translates the increments as UP.
0 Not active								
1 increment output								

SP.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5101 \\ 13293 \\ 21485 \\ 29677 \end{array}$	42970	Float	-1	...	\square	Effective setpoint. The value reached at the end of setpoint processing, after taking W 2, external setpoint, gradient, boost function, programmer settings, start-up function, and limit functions into account. Comparison with the effective process value leads to the control deviation, from which the necessary controller response is derived.

1 Cntr

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Tune	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5140 \\ 13332 \\ 21524 \\ 29716 \end{array}$	43048	Int	0... 65535	\square	Status information during self-tuning, e.g. the actual condition, and possible results, warnings, and error messages.

Bit 0 Process lined out; $0=$ No; $1=$ Yes
Bit 1 Operating mode 'Self-tuning controller; $0=0 \mathrm{ff} ; 1=0 n$
Bit 2 Result of controller self-tuning; $0=0 \mathrm{~K} ; 1=$ Fault
Bit 3-7 Not used
Bit 8-11 Result of the 'heating' attempt
0000 No message / Attempt still running
0001 Successful
0010 Successful, with risk of exceeded setpoint
0011 Error: W rong operating sense
0100 Error: No response from process
0101 Error: Turning point too low
0110 Error: Risk of exceeded setpoint
0111 Error: Step output too small
1000 Error: Setpoint reserve too small
Bit 12-15 Result of 'cooling' attempt (same as heating attempt)

Vmax1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5142 \\ 13334 \\ 21526 \\ 29718 \end{array}$	43052	Float	0...	\square	M ax. rate of change for 'heating', i.e. the fastest process value increase during self-tuning. Vmax is calculated by the self-tuning function, and is determined by the reaction of the process to a change of the control output. It is used for defining controller action.
Kp1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5143 \\ 13335 \\ 21527 \\ 29719 \end{array}$	43054	Float	0...	\square	Process gain for 'heating'. For control loops with self-regulation, process gain is the ratio determined by the change of the control output and the resulting permanent change of the process value. Kp is calculated by the self-tuning function, and is used for defining controller action.

1 Cntr

- Sional

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
M sg2	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5148 \\ 13340 \\ 21532 \\ 29724 \end{array}$	43064	Enum	Enum_Msg	The result of self-tuning for 'cooling' indicates whether self-tuning was successful, and with what result.

0 No message / Tuning attempt still running
1 Self-tuning has been completed successfully. The new parameters are valid.
2 Self-tuning was successful, but with a warning. The new parameters are valid. Note: Self-tuning was aborted due to the risk of an exceeded setpoint, but useful parameters were determined. Possibly repeat the attempt with an increased setpoint reserve.
3 The process reacts in the w rong direction.
Possible remedy: Reconfigure the controller (inverse <-> direct). Check the controller output sense (inverse <->direct).
4 No response from the process. Perhaps the control loop is open. Possible remedy: Check sensor, connections, and process.
5 The process value turning point of the step response is too low. Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').
$6 \quad$ Self-tuning was aborted due to the risk of an exceeded setpoint. No useful parameters were determined.
Possible remedy: Repeat the attempt with an increased setpoint reserve.
7 The step output change is not large enough (minimum change $>5 \%$). Possible remedy: Increase the permitted step output range, i.e. increase the parameter Y.Hi ('heating') or reduce the parameter Y.Lo ('cooling').

8 The controller is waiting. Setpoint reserve must be given before generating the step output change.
Acknow ledgment of this error message leads to switch-over to automatic mode.
If self-tuning shall be continued, change set-point, change process value, or decrease set-point range.
9 Impulse tuning failed. No useful parameters were determined. The control loop is perhaps not closed: check sensor, connections and process.

1 Cntr

Signal

$2 \operatorname{lnP} .1$							
- ConF							
Name	r/w	Adr. Integer	real	Typ	Value/off		Description
I.Fnc		base 167 IdP 8359 2dP 16551 3dP 24743	33102	Enum	Enum_IFnc		Selection of the function assigned to the value at $\operatorname{INP} 1$, e.g. value at INP1 is the external setpoint.
0 no function (subsequent input data are skipped)							
Heating current input.							
					2 External setpoint SP.E or (depending on version) external setpoint shift SP.E. (Switchover is done via -> LOGI/SP.E).		
					Position feedback signal Yp.		
					Second process value X2. For process value functions such as ratio, min, max, mean. Adjustment via Cntr/C.tYP.		
					Preset for external positioning value Y.E (switchover via -> LOGI/Y.E)		
					No controller input (replaced e.g. by limit value signalling).		
					Process value X 1.		

2 InP. 1
 ConF

Name	r/w	Adr. Integer	real	Typ	Value/off	Description	
S.tYP	r/w	base	1150	35068	Enum	Enum_StYP	Sensor type selection. For sensors with signals of resistance
		1 dP	9342				
		2 dP	17534				
		3 dP	25726				

0	thermocouple type L (-100...900 ${ }^{\circ}$), Fe-CuNi DIN Fahrenheit: - $148 . . .1652^{\circ} \mathrm{F}$
1	thermocouple type J ($-100 \ldots . .1200^{\circ} \mathrm{C}$), Fe-CuNi Fahrenheit: - $148 . . .2192^{\circ} \mathrm{F}$
2	thermocouple type $\mathrm{K}\left(-100 \mathrm{O} . .1350^{\circ} \mathrm{C}\right)$, $\mathrm{NiCr}-\mathrm{Ni}$ Fahrenheit: - $148 . . .2462^{\circ} \mathrm{F}$
3	thermocouple type $\mathrm{N}\left(-100 \ldots . .1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil Fahrenheit: - $148 \ldots . .2372^{\circ} \mathrm{F}$
4	thermocouple type $\mathrm{S}\left(0 . . .1760^{\circ} \mathrm{C}\right)$, PtRh-Pt10\% Fahrenheit: $32 . . .3200^{\circ} \mathrm{F}$
5	thermocouple type R ($\left.0 . . .1760^{\circ} \mathrm{C}\right)$, PtRh-Pt13\% Fahrenheit: $32 . . .3200^{\circ} \mathrm{F}$
6	thermocouple type $\mathrm{T}\left(-200 \ldots . .400^{\circ} \mathrm{C}\right)$, $\mathrm{Cu}-\mathrm{CuNi}$ Fahrenheit: - $328 . . .752^{\circ} \mathrm{F}$
7	thermocouple type C $\left(0 . . .2315^{\circ} \mathrm{C}\right)$, W 5% Re-W 26% Re Fahrenheit: $32 . . .4199^{\circ} \mathrm{F}$
8	thermocouple type D (0... $\left.2315^{\circ} \mathrm{C}\right)$, W 3\%Re-W 25% Re Fahrenheit: $32 . . .4199^{\circ} \mathrm{F}$
9	thermocouple type $\mathrm{E}\left(-100 \ldots . .1000^{\circ} \mathrm{C}\right)$, NiCr-CuNi Fahrenheit: - $148 . . .1832^{\circ} \mathrm{F}$
10	thermocouple type B ($0 / 400 \ldots . .1820^{\circ} \mathrm{C}$), PtRh-Pt6\% Fahrenheit: $32 / 752 . . .3308^{\circ} \mathrm{F}$

18 Special thermocouple with a linearization characteristic selectable by the user. This enables non-linear signals to be simulated or linearized.
20 Pt100 (-200.0 ... $\left.100.0(150.0)^{\circ} \mathrm{C}\right)$
M easuring range up to $150^{\circ} \mathrm{C}$ at reduced lead resistance.
Fahrenheit: - $328 \ldots . .212(302)^{\circ} \mathrm{F}$
21 Pt100 ($-200.0 \ldots 850,0^{\circ} \mathrm{C}$)
Fahrenheit: - $328 . . .1562^{\circ} \mathrm{F}$
22 Pt $1000\left(-200.0 . . .850 .0^{\circ} \mathrm{C}\right)$
Fahrenheit: -328... $1562{ }^{\circ} \mathrm{F}$
23 Special : $0 . . .4500$ Ohms.
For KTY 11-6 with preset special linearization ($-50 . . .150^{\circ} \mathrm{C}$ or $-58 . . .302^{\circ} \mathrm{F}$).
24 Special $0 . . .4500 \mathrm{hm}$
30 Current : $0 . . .20 \mathrm{~mA} / 4 . . .20 \mathrm{~mA}$
$40 \quad 0 . .10 \mathrm{~V} / 2 \ldots 10 \mathrm{~V}$
41 Special -2.5... 115 mV
42 Special : -25... 1150 mV
50 potentiometer 0... 1600 hm
51 potentiometer $0 . . .4500 \mathrm{hm}$
52 potentiometer $0 . .16000 \mathrm{hm}$
53 potentiometer $0 . . .4500 \mathrm{hm}$

S.Lin	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	1151 9343 17535 25727	35070	Enum	Enum_SLin	Linearization (not adjustable for all sensor types S.tYP). Special linearization. The linearization table can be created with the Engineering Tool. The default characteristic is for KTY 11-6 temperature sensors.
0 No special linearization. 1 Special linearization. Definition of the linearization table is possible with the Engineering Tool. The default setting is the characteristic of the KTY 11-6 temperature sensor.							

[^0]| In.F | r/w | $\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$ | $\begin{gathered} 1152 \\ 9344 \\ 17536 \\ 25728 \end{gathered}$ | 35072 | Float | -1 | ... | \square | Substitute value in case of a fault. This value is used for calculations, if there is a fault at the input (e.g. FAIL). |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PArA								
Name	r/w	Adr. In	eger	real	Typ	Value/off	Description	
InL. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1100 \\ 9292 \\ 17484 \\ 25676 \end{array}$	34968	Float	-1 ...	\square	Input value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the lower scaling point (e.g. 4 mA) is done using the corresponding electrical value.
OuL. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1101 \\ 9293 \\ 17485 \\ 25677 \end{gathered}$	34970	Float	-1 ...	\square	Display value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the lower scaling point, e.g. 4 mA is displayed as 2 [pH].
InH. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1102 \\ 9294 \\ 17486 \\ 25678 \end{gathered}$	34972	Float	-1 ...	\square	Input value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the upper scaling point (e.g. 20 mA) is done using the corresponding electrical value.
OuH. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1103 \\ 9295 \\ 17487 \\ 25679 \end{gathered}$	34974	Float	-1 ...	\square	Display value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the upper scaling point, e.g. 20 mA is displayed as 12 [pH].
t.F1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1104 \\ 9296 \\ 17488 \\ 25680 \end{gathered}$	34976	Float	0... 100	\square	Filter time constant [s]. Every input is fitted with a digital (software) low-pass filter for suppressing process-related disturbances on the input leads. Higher filter settings improve the suppression, but increase the delay of the input signals.
E.tc1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1105 \\ 9297 \\ 17489 \\ 25681 \end{gathered}$	34978	Float	0... 100	\checkmark	External temperature compensation (temperature at the junction of thermocouple/copper lead with external temperature compensation).

$3 \operatorname{lnP} .2$									
-	Con ${ }^{\text {c }}$								
	Name	r/w	Adr. Integer real Tp			Typ	Value/off		Description
	I.Fnc		base 1 dP 2dP 3 dP	161 8353 16545 24737	33090	Enum	Enum_IFnc		Selection of the function assigned to the value at $\operatorname{INP2}$, e.g. value at INP2 is the external setpoint.
0 no function (subsequent input data are skipped)									
Heating current input.									
							2	External setpoint SP.E or (depending on version) external setpoint shift SP.E. (Switchover is done via -> LOGI/SP.E).	
							Po	Position feedback signal Y ¢p.	
							$\begin{aligned} & \mathrm{S} \\ & \mathrm{Fc} \end{aligned}$	Second process value X 2 . For process value functions such as ratio, min, max, mean. Adjustment via Cntr/C.tYP.	
							Pr	Preset for external positioning value Y.E (sw itchover via ->LOG/Y.E)	
							6 No	No controller input (replaced e.g. by limit value signalling).	
							Pro	Process value X 1.	

\footnotetext{
3 InP. 2

ConF

Corr	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	162 8354 16546 24738	33092	Enum	Enum_Corr		M easured value correction / scaling
						0 W ithout scaling		
						Th lo di	The offset correction (in the CAL Level) can be done on-line in the process. If InL shows the lower input value of the scaling point, then OuL must be adjusted to the corresponding display value. Adjustments are made via the front panel keys of the device only.	
						$2-1$	2-point correction (in CAL-Level) ist possible offline via process value transmitter or on-line in the process. Set process value for the upper and lower scaling point and confirm as input value InL or InH, then set the belonging displayed value OuL and OuH. The settings are done via the front of the device.	
						Sc (In en	Scaling (at PArA-level). The input values for the upper (InL, OuL) and lower scaling point ($\mathrm{InH} . \mathrm{OuH}$) are visible at the parameter level. Adjustment is made via front operation or the engineering tool.	

In.F	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 1252 \\ 9444 \\ 17636 \\ 25828 \end{array}$	35272	Float	-1	...	\square	Substitute value in case of a fault. This value is used for calculations, if there is a fault at the input (e.g. FAIL).

PArA								
Name	r/w	Adr. In	eger	real	Typ	Value/off		Description
InL. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1200 \\ 9392 \\ 17584 \\ 25776 \end{gathered}$	35168	Float	-1 ...	\square	Input value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the lower scaling point (e.g. 4 mA) is done using the corresponding electrical value.
OuL. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1201 \\ 9393 \\ 17585 \\ 25777 \end{array}$	35170	Float	-1 ...	\square	Display value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the lower scaling point, e.g. 4 mA is displayed as $2[\mathrm{pH}]$.
InH. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1202 \\ 9394 \\ 17586 \\ 25778 \end{gathered}$	35172	Float	-1 ...	\square	Input value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the upper scaling point (e.g. 20 mA) is done using the corresponding electrical value.

3 InP .2								
- Para								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
OuH. 2	r/w	base $1 d P$ 2dP 3 dP	$\begin{aligned} & 1203 \\ & 9395 \\ & 17587 \\ & 25779 \end{aligned}$	35174	Float	-1 ...	\square	Display value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the upper scaling point, e.g. 20 mA is displayed as $12[\mathrm{pH}]$.
t.F2	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{aligned} & 1204 \\ & 9396 \\ & 17588 \\ & 25780 \end{aligned}$	35176	Float	0... 100	\square	Filter time constant [s]. Every input is fitted with a digital (softw are) low-pass filter for suppressing process-related disturbances on the input leads. Higher filter settings improve the suppression, but increase the delay of the input signals.

4 InP. 3

Con								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
I.Fnc	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 166 \\ 8358 \\ 16550 \\ 24742 \end{array}$	33100	Enum	Enum_IFnc		Selection of the function assigned to the value at INP3, e.g. value at INP3 is the external setpoint.
0 no function (subsequent input data are skipped)								
Heating current input.								
						External setpoint SP.E or (depending on version) external setpoint shift SP.E. (Switchover is done via -> LOGI/SP.E).		
						Position feedback signal Y ¢ ${ }^{\text {a }}$		
						Second process value X 2 . For process value functions such as ratio, min, max, mean. Adjustment via Cntr/C.tYP.		
						Preset for external positioning value Y.E (sw itchover via ->LOGI/Y.E)		
						No controller input (replaced e.g. by limit value signalling).		
						7 Process value X 1.		

4 InP. 3
 ConF

Name	r/w	Adr. Integer	real	Typ	Value/off	Description	
S.tYP	r/w	base	1350	35468	Enum	Enum_StYP3	Sensor type selection. For sensors with signals of resistance
		$1 d P$	9542				
		$2 d P$	17734				
		$3 d P$	25926				

0	thermocouple type L $\left(-100 . . .900^{\circ} \mathrm{C}\right)$, Fe-CuNi DIN Fahrenheit: - $148 . . .1652^{\circ} \mathrm{F}$
1	thermocouple type J $\left(-100 . . .1200^{\circ} \mathrm{C}\right)$, $\mathrm{Fe}-\mathrm{CuNi}$ Fahrenheit: - $148 . . .2192^{\circ} \mathrm{F}$
2	thermocouple type $\mathrm{K}\left(-100 . . .1350^{\circ} \mathrm{C}\right)$, $\mathrm{NiCr}-\mathrm{Ni}$ Fahrenheit: - 148 ... $2462^{\circ} \mathrm{F}$
3	thermocouple type $\mathrm{N}\left(-100 \ldots . .1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil Fahrenheit: - $148 . . .2372^{\circ} \mathrm{F}$
4	thermocouple type $\mathrm{S}\left(0 \ldots 1760^{\circ} \mathrm{C}\right)$, PtRh-Pt10\% Fahrenheit: $32 . .3200^{\circ} \mathrm{F}$
5	thermocouple type R $\left(0 . . .1760^{\circ} \mathrm{C}\right)$, PtRh-Pt13\% Fahrenheit: $32 . . .3200^{\circ} \mathrm{F}$
6	thermocouple type $\mathrm{T}\left(-200 . . .400^{\circ} \mathrm{C}\right)$, Cu-CuNi Fahrenheit: - $328 . . .752^{\circ} \mathrm{F}$
7	thermocouple type C ($0 . . .2315^{\circ} \mathrm{C}$), W 5\% Re-W 26% Re Fahrenheit: $32 . . .4199^{\circ} \mathrm{F}$
8	thermocouple type $D\left(0 . . .2315^{\circ} \mathrm{C}\right)$, W 3\%Re-W 25% Re Fahrenheit: $32 . . .4199^{\circ} \mathrm{F}$
9	thermocouple type $\mathrm{E}\left(-100 . .1000^{\circ} \mathrm{C}\right)$, NiCr-CuNi Fahrenheit: - $148 . . .1832^{\circ} \mathrm{F}$
10	thermocouple type B (0/100... $1820^{\circ} \mathrm{C}$), PtRh-Pt6\% Fahrenheit: $32(212) . . .3308^{\circ} \mathrm{F}$
18	Special thermocouple with a linearization characteristic selectable by the user. This enables non-linear signals to be simulated or linearized.
20	Pt100 (-200.0 ... 100.0(150.0) ${ }^{\circ} \mathrm{C}$) M easuring range at reduced lead resistance up to $150^{\circ} \mathrm{C}$. Fahrenheit: - $328 . . .212(302)^{\circ} \mathrm{F}$
21	Pt100 ($-200.0 \ldots 850,0^{\circ} \mathrm{C}$) Fahrenheit: - $328 . . .1562^{\circ} \mathrm{F}$
22	Pt $1000\left(-200.0 . . .850 .0^{\circ} \mathrm{C}\right)$ Fahrenheit: - $328 \ldots . .1562^{\circ} \mathrm{F}$
23	Special : $0 . . .4500$ Ohms. For KTY 11-6 with preset special linearization ($-50 . . .150^{\circ} \mathrm{C}$ or $-58 . . .302^{\circ} \mathrm{F}$).
24	Special : $0 . . .450$ Ohms
30	Current : $0 . . .20 \mathrm{~mA} / 4 . . .20 \mathrm{~mA}$
41	Special : -2,5...115 mV
42	Special : -25...1150 mV
50	Potentiometer : $0 . . .160$ Ohms
51	Potentiometer :0... 450 Ohms
52	Potentiometer :0... 1600 Ohms
53	Potentiometer : $0 . . .4500$ Ohms

S.Lin	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1351 \\ 9543 \\ 17735 \\ 25927 \end{array}$	35470	Enum	Enum_SLin		Linearization (not adjustable for all sensor types S.tYP). Special linearization. The linearization table can be created with the Engineering Tool. The default characteristic is for KTY 11-6 temperature sensors.
0 No special linearization.								
						Special linearization. Definition of the linearization table is possible with the Engineering Tool. The default setting is the characteristic of the KTY 11-6 temperature sensor.		

4 InP . 3
Con=

Name	r/w	Adr. Integer real	Typ	Value/off	Description	
Corr	r/w	base	165	33098	Enum	Enum_Corr3
		$1 d P$	8357			
		$2 d P$	16549			
		$3 d P$	24741			

W ithout scaling
1 The offset correction (in the CAL Level) can be done on-line in the process. If InL shows the lower input value of the scaling point, then OuL must be adjusted to the corresponding display value. Adjustments are made via the front panel keys of the device only.
2 Two-point correction (in CAL-Level) ist possible offline via process value transmitter or on-line in the process. Set process value for the upper and lower scaling point and confirm as input value InL or InH, then set the belonging displayed value OuL and OuH. The settings are done via the front of the device.
3 Scaling (at PArA-level). The input values for the upper (InL, OuL) and lower scaling point (InH. OuH) are visible at the parameter level. Adjustment is made via front operation or the engineering tool.

In.F	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \\ \hline \end{array}$	$\begin{gathered} 1352 \\ 9544 \\ 17736 \\ 25928 \end{gathered}$	35472	Float	-1	...	\square	Substitute value in case of a fault. This value is used for calculations, if there is a fault at the input (e.g. FAIL).

PA								
Name	r/w	Adr. In	eger	real	Typ	Value/of		Description
InL. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} \hline 1300 \\ 9492 \\ 17684 \\ 25876 \end{gathered}$	35368	Float	-1 ...	\square	Input value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the lower scaling point (e.g. 4 mA) is done using the corresponding electrical value.
OuL. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1301 \\ 9493 \\ 17685 \\ 25877 \end{array}$	35370	Float	-1 ...	\square	Display value of the lower scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the lower scaling point, e.g. 4 mA is displayed as $2[\mathrm{pH}]$.
InH. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1302 \\ 9494 \\ 17686 \\ 25878 \end{gathered}$	35372	Float	-1 ...	\square	Input value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The display of the input value of the upper scaling point (e.g. 20 mA) is done using the corresponding electrical value.
OuH. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1303 \\ 9495 \\ 17687 \\ 25879 \end{gathered}$	35374	Float	-1 ...	\square	Display value of the upper scaling point. Depending on sensor type, the input value can be scaled to the required display value in the Parameter Level. The operator can change the display value of the upper scaling point, e.g. 20 mA is displayed as 12 [pH].
t.F3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1304 \\ 9496 \\ 17688 \\ 25880 \end{array}$	35376	Float	0...	\square	Filter time constant [s]. Every input is fitted with a digital (software) low-pass filter for suppressing process-related disturbances on the input leads. Higher filter settings improve the suppression, but increase the delay of the input signals.
E.tc3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1305 \\ 9497 \\ 17689 \\ 25881 \end{gathered}$	35378	Float	0... 100	\square	External temperature compensation (temperature at the junction of thermocouple/ copper lead with external temperature compensation).

Sfigna								
	r/w	Adr. Integer		real	Typ	Value/off	Description	
In. 3	r	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{aligned} & 1370 \\ & 9562 \\ & 17754 \\ & 25946 \end{aligned}$	35508	Float	-1	\square	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
Fail		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1371 \\ 9563 \\ 17755 \\ 25947 \end{gathered}$	35510	Enum	Enum_InpFail		Input circuit fault: faulty or incorrectly connected sensor.
0 no error								
1 sensor break								
2 Incorrect polarity at input.								
4 Short circuit at input.								
In. 3 r		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{aligned} & 1372 \\ & 9564 \\ & 17756 \\ & 25948 \end{aligned}$	35512	Float	-1 ...	\square	M easurement value before the measurement value correction (unprocessed).
F.Inp	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1380 \\ & 9572 \\ & 17764 \\ & 25956 \end{aligned}$	35528	Float	-1 ...	\square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

5 Lim									
-	Con ${ }^{\text {c }}$								
	Name	r/w	Adr. Integer real T			Typ	Value/off		Description
	Fnc. 1	r/w	base $1 d P$ 2dP 3dP	2150 10342 18534 26726	37068	Enum	Enum_Fen		Activation and adjustment of the limit value alarm (e.g. for input circuit monitoring), e.g. with/without storage.
$0 \quad$ No limit value monitoring.									
								measured value monitoring. The alarm signal is generated, if the limit is exceeded. If the measured value is within the limits (including hysteresis) again, this alarm signal is resetted.	
								Measured value monitoring +alarm status latch. An alarm signal is generated, if the limit is exceeded. A latched alarm signal remains latched until it is manually resetted.	
							Signal monitoring for rate of change (per minute).		
							4 Sis	Signal monitoring for rate of change (per minute) + storage of the alarm status.	

5 Lim

ConF

LP.AL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5058 \\ 13250 \\ 21442 \\ 29634 \end{array}$	42884	Enum	Enum_LPAL		M onitoring of control loop interruption (not possible with 3-point stepping controller, not possible with signaller)
						0 switched off / inactive		
						LOOP alarm is generated, if with $Y=100 \%$ there is no corresponding reaction of the process variable within the time of 2 xti . Possible remedial action: Check heating or cooling circuit, check sensor and replace it, if necessary, check controller and switching device.		

5 Lim								
PArA								
Name	r/w	Adr. I	teger	real	Typ	Value/off		Description
L. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 d \mathrm{P} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2100 \\ 10292 \\ 18484 \\ 26676 \end{array}$	36968	Float	-1 ...	\square	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.
H. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 2101 \\ 10293 \\ 18485 \\ 26677 \end{array}$	36970	Float	-1 ...	\square	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper lower limit value plus hysteresis.
HYS. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 2102 \\ 10294 \\ 18486 \\ 26678 \\ \hline \end{array}$	36972	Float	0...	\square	Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount (rise above upper limit or fall below lower limit) before the limit value alarm is reset.
dEL. 1		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 2103 \\ 10295 \\ 18487 \\ 26679 \end{array}$	36974	Float	0...	\square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.
HC.A	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2000 \\ 10192 \\ 18384 \\ 26576 \end{array}$	36768	Float	-1 ...	\square	Heating current monitoring limit [A]. Depending on configuration, and apart from short-circuit monitoring, an overload test checks whether the heating current is above the adjusted current limit, or below the limit when the heating is switched off. The heating current is measured by means of a current transformer (accessory), and the current range can be adapted.

Src. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2251 \\ 10443 \\ 18635 \\ 26827 \end{array}$	37270	Enum	Enum_Src		Source for limit value. Selection of which value is to be monitored.
						$0 \quad$ Process value =absolute alarm		
						${ }^{\text {c }}$	control deviation xw (process value - set-point) = relative alarm Note: M onitoring with the effective set-point W eff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.	
						2 C	Control deviation XW (= relative alarm) with suppression during start-up and setpoint changes. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again, at the latest after $10 * \mathrm{Tn}$.	
						3 N	M easured value of the analog input INP1.	
						4	M easured value of the analog input INP2.	
						5	M easured value of the analog input INP3.	
						$6 \quad$ efir	effective set-point W eff. For example the ramp-function changes the effective set-point untill it matches the internal (target) set-point.	
						7 c	correcting variable y (controller output)	
						8 corn in	control variable deviation xw (actual value - internal set-point) = deviation alarm to internal set-point Note: M onitoring with the internal set-point Wint. For example using a ramp it is the target setpoint, not the changing set-point of the ramp.	
						9 -	Difference $\times 1$ - $\times 2$ (e.g. in combination with the process value function "M ean value", applicable for detecting aged thermocouples), difference betw een first and second process value.	
						11	Control deviation Xw (= relative alarm) with suppression during start-up and setpoint change. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again.	

PArA								
Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
L. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2200 \\ 10392 \\ 18584 \\ 26776 \end{array}$	37168	Float	-1 ...	\square	Low er limit value. The alarm is triggered if the value falls below the limit, and is reset with low er limit value plus hysteresis.

Lim2								
- para								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
H. 2		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} 2201 \\ 10393 \\ 18585 \\ 26777 \end{array}$	37170	Float	-1	\square	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper lower limit value plus hysteresis.
HYS. 2		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} \hline 2202 \\ 10394 \\ 18586 \\ 26778 \end{array}$	37172	Float	0...	\square	Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount rrise above upper limit or fall below low er limit) before the limit value alarm is reset.
dEL. 2		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{array}{r} \hline 2203 \\ 10395 \\ 18587 \\ 26779 \end{array}$	37174	Float	0...	\square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.

Signa							
Name	r/w	Adr. In	teger	real	Typ	Value/off	Description
St.Lim	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2270 \\ 10462 \\ 18654 \\ 26846 \end{array}$	37308	Enum	Enum_LimStatus	Limit value status: No alarm present or stored.
0 no alarm							
						2 A limit value has been exceeded.	

7 Lim3
 ConF

Name	r/w	Adr. Integer		real 37470		Value/off	Description
Src. 3	r/w	base	2351			Enum_Src	Source for limit value. Selection of which value is to be monitored.
			10543				
		$\begin{aligned} & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 18735 \\ & 26927 \end{aligned}$				

1 control deviation xw (process value - set-point) = relative alarm Note: M onitoring with the effective set-point W eff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.
2 Control deviation Xw (= relative alarm) with suppression during start-up and setpoint changes. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again, at the latest after 10 * Tn.
$3 \quad$ M easured value of the analog input INP1.
4 M easured value of the analog input INP2.
5 M easured value of the analog input INP3.
6 effective set-point W eff.
For example the ramp-function changes the effective set-point untill it matches the internal (target) set-point.
7 correcting variable y (controller output)
8 control variable deviation xw (actual value - internal set-point) = deviation alarm to internal set-point
Note: M onitoring with the internal set-point W int. For example using a ramp it is the target setpoint, not the changing set-point of the ramp.
9 Difference $\times 1$ - x2 (e.g. in combination with the process value function "M ean value", applicable for detecting aged thermocouples), difference betw een first and second process value.
11 Control deviation Xw (= relative alarm) with suppression during start-up and setpoint change. Limit value monitoring is continued as soon as the control deviation comes within the alarm limits again.

PArA								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
L. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2300 \\ 10492 \\ 18684 \\ 26876 \end{array}$	37368	Float	-1 ...	\square	Lower limit value. The alarm is triggered if the value falls below the limit, and is reset with lower limit value plus hysteresis.
H. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 2301 \\ 10493 \\ 18685 \\ 26877 \end{array}$	37370	Float	-1	\square	Upper limit value. The alarm is triggered if the value rises above the limit, and is reset with upper low er limit value plus hysteresis.
HYS. 3	r/w	$\begin{array}{\|l\|} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \\ 3 \end{array}$	$\begin{array}{r} 2302 \\ 10494 \\ 18686 \\ 26878 \end{array}$	37372	Float	0...	\square	Hysteresis of the limit value. Switching difference for upper and lower limit value. The limit value must change by this amount (rise above upper limit or fall below low er limit) before the limit value alarm is reset.
dEL. 3	r/w	$\begin{array}{\|l\|} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \\ 3 d P \end{array}$	$\begin{array}{r} 2303 \\ 10495 \\ 18687 \\ 26879 \end{array}$	37374	Float	0...	\square	Delayed alarm of a limit value. The alarm is only triggered after the defined delay time. It is only indicated, and possibly stored, if it is still present after the delay time has elapsed.

7 Lim3

Signa

Name	r/w	Adr. Integer	real	Typ	Value/off	Description	
St.Lim	r	base	2370	37508	Enum	Enum_LimStatus	Limit value status: No alarm present or stored.
		$1 d \mathrm{dP}$	10562				
		2 dP	18754				
		3 dP	26946				

8 LOGl							
Con=							
Name	r/w	Adr. Integer		real	Typ	Value/off	Description
Y2	r/w	base 1 dPP 2 dP 3 dP	1054 9246 17438 25630	34876	Enum	Enum_dlnP3	Source of the control signal for activating the second positioning output Y2. Activated Y2 = positioner control. Caution: The parameter 'positioning output Y2' must not be confused with the controller output Y2!
0 no function (switch-over via interface is possible)							
2 Digital Input DI1 switches							
3 DI2 switches (only visible with OPTION)							
4 DI3 switches (only visible with OPTION)							
5 F-key switches.							
						6 Auto/manual key switches (A/M key)	
Y.E	r/w	base 1 ldP 2dP 3dP	1055 9247 17439 25631	34878	Enum	Enum_dlnP2	Signal for activating the external output value. The internal output value Ypid is the controllers reaction on the process, with external output value Y.E the controller output is controlled.
0 no function (switch-over via interface is possible)							
						1 always activated (manual station)	
						2 Digital Input Dl1 switches	
						3 DI2	DI2 switches (only visible with OPTION)
						4 D	DI3 switches (only visible with OPTION)
						$5 \quad$ F-k	F-key switches.
						6 Al	Auto/manual key switches (A/M key)
mAn	r/w		1056 9248 17440 25632	34880	Enum	Enum_dlın2	Source of the control signal for auto/manual switchover. In the automatic mode, the controller is in charge. In the manual mode, the outputs can be varied independently of the process.
						0 no function (switch-over via interface is possible)	
						1 alw	alw ays activated (manual station)
						2 Di	Digital Input DI1 switches
						3 DI2	DI2 switches (only visible with OPTION)
						4 DI3	DI3 switches (only visible with OPTION)
						5 F-k	F-key switches.
						6 Aut	Auto/manual key switches (A/M key)
C.OFF	r/w	base 1 dP 2dP 3dP	1057 9249 17441 25633	34882	Enum	Enum_dlnP3	Source of the control signal for disabling all the controller outputs.Note: Forcing has priority, and remains active; alarm processing also remains active.
0 no function (switch-over via interface is possible)							
						2 Dig	Digital Input DI1 switches
						3 DI2	DI2 switches (only visible with OPTION)
						4 DI3	DI3 switches (only visible with OPTION)
						$5 \quad \mathrm{~F}-\mathrm{k}$	F-key switches.
						6 Al	Auto/manual key switches (A/M key)

Err.r	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1059 \\ 9251 \\ 17443 \\ 25635 \end{gathered}$	34886	Enum	Enum_dlnP3	Source of the control signal for resetting all stored entries in the error list (the list contains all error messages and alarms). If an alarm is still present, i.e. the source of trouble has not been remedied, stored alarms cannot be acknow ledged (reset).
0 no function (switch-over via interface is possible)							
						2 Di	Digital Input DI1 switches
						3 DI2	DI2 switches (only visible with OPTION)
						4 Dl 3	DI3 switches (only visible with OPTION)
						5 F-ke	F-key switches.
						6 Auto	Auto/manual key switches (A/M key)

Signo							
Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
St.Di	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1070 \\ 9262 \\ 17454 \\ 25646 \end{array}$	34908	Int	0...7	Status of the digital inputs or of push-buttons (binary coded).
Bit 0 Input 1 Bit 1 Input 2 Bit 2 Input 3 Bit 8 Status of 'F' key Bit 9 Status of 'A/M ' key Bit 10 Status of 'Sel' key Bit 11 Status of 'Down' key Bit 12 Status of 'Up' key Bit 13 Status of 'Loc' key							
L-R	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 1080 \\ 9272 \\ 17464 \\ 25656 \end{array}$	34928	Int	0... 1 -	Remote operation. Remote means that all values can only be adjusted via the interface. Adjustments via the front panel are blocked.
W_W2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1081 \\ 9273 \\ 17465 \\ 25657 \end{gathered}$	34930	Int	0...1 \square	Signal for activating the second (safety) setpoint (SP.2=) W 2. Note: Setpoint W 2 is not restricted by the setpoint limits!

8 LOGI								
- Sional								
Name	r/w	Adr.	teger	real	Typ	Value/o		Description
Wi_We		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{aligned} & 1082 \\ & 9274 \\ & 17466 \\ & 25658 \end{aligned}$	34932	Int	0... 1	\square	Signal for activating the external setpoint value. SP.E is the externa setpoint, or dependent on the device and configuration of the setpoint shift.
Y_Y2		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1083 \\ & 9275 \\ & 17467 \\ & 25659 \end{aligned}$	34934	Int	0... 1	\square	Signal for activating the 2nd output value Y 2 . With selected Y 2 , the output is operated as a positioner.Caution: Do not confuse the parameter 'fixed output $Y 2$ ' with the controller output $Y 2$!
Y_Y.E		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1084 \\ & 9276 \\ & 17468 \\ & 25660 \end{aligned}$	34936	Int	0... 1	\square	Signal for activating the external positioning value. The controller is operated as positioner.
A-M		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1085 \\ & 9277 \\ & 17469 \\ & 25661 \end{aligned}$	34938	Int	0... 1	\square	Signal for activating manual operation. In the manual mode, the controller provides output signals independent of the process.
C.0ff	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1086 \\ & 9278 \\ & 17470 \\ & 25662 \\ & \hline \end{aligned}$	34940	Int	0... 1	\square	Signal for disabling all the controller outputs. Note: Forcing has priority; alarm processing remains active.
L.AM		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{aligned} & 1087 \\ & 9279 \\ & 17471 \\ & 25663 \end{aligned}$	34942	Int	0... 1	\square	Signal for disabling manual operation. Triggers a forced switchover to automatic mode, and disables the front panel A / M key (also if other functions have been assigned to the key).
Err.r		$\begin{aligned} & \text { base } \\ & 1 d P \\ & 2 d P \\ & 3 d P \end{aligned}$	$\begin{aligned} & 1088 \\ & 9280 \\ & 17472 \\ & 25664 \end{aligned}$	34944	Int	0... 1	\square	Signal for resetting the entire error list. The error list contains all errors that are reported, e.g. device faults and limit values. It also contains queued as well as stored errors after their correction. The reset acknow ledges all errors, whereby queued errors will reappear after the next error detection (measurement).
SSR.Res	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & \hline 1089 \\ & 9281 \\ & 17473 \\ & 25665 \end{aligned}$	34946	Int	0... 1	\square	Reset of the alarm triggered by a solid-state relay (SSR). SSRs are mostly used for frequent switching of heating elements, because they have no mechanical contacts that can wear out. However, an unnoticed short circuit could lead to overheating of the machine.
Set1.2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 1091 \\ 9283 \\ 17475 \\ 25667 \end{array}$	34950	Int	0... 1	\square	Switch-over of parameter set. The 2nd parameter set contains one complete set each of Pb (= proportional band), ti (=integral action time), and td (= derivative action time) for heating and for cooling. All other control parameters, such as sw itching duty cycles, are valid for both parameter sets.
Prg.R.S	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{aligned} & 1092 \\ & 9284 \\ & 17476 \\ & 25668 \end{aligned}$	34952	Int	0... 1	\square	Signal for starting the programmer. On units with a simple programmer (only 1 program), a stop immediately causes a reset, followed by a new start. With units that have been defined as program controllers (several programs), the program is stopped, and then continued.
Prg.Res	r/w	base 1 dP 2dP 3dP	1093 9285 17477 25669	34954	Int	0... 1	\square	Programmer reset switches the programmer off, and sets it back to the starting condition. Reset stops the currently active program, and activates the internal setpoint. A new ly selected program becomes the active program.

8 LOG1									
-	Sig								
	Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
	F.Di	r/w	base 1 dP 2 dP 3 dP	$\begin{gathered} 1094 \\ 9286 \\ 17478 \\ 25670 \end{gathered}$	34956	Int	0... 7	\square	Forcing of digital inputs. Forcing involves the external operation of at least one input. The instrument takes over this input value (preset value for inputs from a superordinate system, e.g. for a function test.)

Bit 0 Forcing of digital input 1
Bit 1 Forcing of digital input 2
Bit 2 Forcing of digital input 3
Bit 3 Forcing of digital input 4
Bit 4 Forcing of digital input 5

I.Chg	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{gathered} 1095 \\ 9287 \\ 17479 \\ 25671 \end{gathered}$	34958	Int	0... 1	\square	Signal for switching the effective process value between the first process value X 1 and second process value X 2 .

9 ohnE

ContStdS	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 120 \\ 8312 \\ 16504 \\ 24696 \end{array}$	33008	Float	1...	\square	This address consists of 2 float data transferred always together: 1st data defines the number of operating hours after reaching InF. 1 will be set. 2nd data defines the number of duty cycles after reaching InF. 2 will be set.

9 ohnE

ConF

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
DigForc	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 121 \\ 8313 \\ 16505 \\ 24697 \end{array}$	33010	Int	0... 255	\square	This address consists of 2 bytes, which can only be transmitted together: 1st datum defines which inputs are to be forced. Bit $0=$ analog Input 1 Bit 1 = analog Input 2 Bit 2 = analog Input 3 Bit $3=$ not used Bit 4 = digital Input 1 Bit $5=$ digital Input 2 Bit $6=$ digital Input 3 Bit $7=$ not used 2nd datum defines which outputs are to be forced. Bit $0=0$ Output 1 Bit $1=0$ output 2 Bit $2=$ Output 3 Bit $3=$ Output 4 Bit $4=$ Output 5 Bit $5=0$ utput 6
Erw Bedie	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 124 \\ 8316 \\ 16508 \\ 24700 \end{array}$	33016	Int	0... 9000	\square	This address consists of 9 w ords. The words can only be transmitted together. The first 8 w ords describe the data to be displayed in the extended Operating Level. The 9th word defines the datum to be show n in the 2nd display value (instead of the setpoint). The basic address is to be entered as the value.
Lin	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 139 \\ 8331 \\ 16523 \\ 24715 \end{array}$	33046	Float	-	\square	16 float values for linearization table with 16 entries structure: input1, output1 input2, output2 Input values must be strictly monotonous rising. Starting from input3 a switching off value can be given.
LocBedie	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 123 \\ 8315 \\ 16507 \\ 24699 \end{array}$	33014	Int	0... 255	\square	This address consists of 2 rsp . 3 bytes defining the release of operating levels. They can olny be transferred together. byte 1 blocking of operating level standard device: byte 2 blocking of operating level programmer: byte 2 blocking of programmer level byte 3 blocking of operating level (content on request)
Pass		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 125 \\ 8317 \\ 16509 \\ 24701 \end{array}$	33018	Int	0...	\square	Passw ord. 4-digit number for the passw ord-protected access to blocked operating functions such as e.g. the Calibrating Level.
PDis3		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} 130 \\ 8322 \\ 16514 \\ 24706 \end{array}$	33028	Int	0... 5	\square	Display 3 of the programmer Operating Level. Selection from a combination of important (time) counters for displaying the program status, e.g. segment number or remaining program time.
T.dis3	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 900 \\ 9092 \\ 17284 \\ 25476 \end{array}$	34568	Text	0... 255	\square	This address contains 8 bytes for the text that is to appear in Display 3.No text: 1st byte 0x00.

ohnE								
- Con=								
Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
T.Inf	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 901 \\ 9093 \\ 17285 \\ 25477 \end{array}$	34570	Text	0... 255	\square	This address contains 16 bytes. Bytes 1 - 8: user-defined text for message Inf. 1 Bytes 9-16: user-defined text for message Inf. 2 No text: 1st byte 0x00
T.Prog	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 902 \\ 9094 \\ 17286 \\ 25478 \end{array}$	34572	Text	0... 255	\square	This address contains 128 bytes.These data contain the user-defined texts for the programs. Bytes 1-8 user-defined text for program 1 Bytes 9-16 user-defined text for program 2 Bytes 17-24 user-defined text for program 3 Bytes 25-32 user-defined text for program 4 Bytes 33-40 user-defined text for program 5 Bytes 41-48 user-defined text for program 6 Bytes 49-56 user-defined text for program 7 Bytes 57-64 user-defined text for program 8 Bytes 65-72 user-defined text for program 9 Bytes 73-80 user-defined text for program 10 Bytes 81-88 user-defined text for program 11 Bytes 89-96 user-defined text for program 12 Bytes 97-104 user-defined text for program 13 Bytes 105-112 user-defined text for program 14 Bytes 113-120 user-defined text for program 15 Bytes 121-128 user-defined text for program 16
Tdis3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 128 \\ 8320 \\ 16512 \\ 24704 \end{array}$	33024	Int	2... 60	\square	Display cycle for Display 3 in seconds. If a value or a bargraph is show n in Display 3, an additional text can be selected. The text is displayed briefly after every cycle time instead of the value or bargraph.
ValuDis3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 127 \\ 8319 \\ 16511 \\ 24703 \end{array}$	33022	Int	0... 9000	\square	Address, which defines the display value in Display 3.
VisibelM	r/w	base 1 ldP 2 dP 3 dP	903 9095 17287 25479	34574	Int	0... 255	\square	This address consists of 55 bytes, which define the visibility mask. They can be transferred only together. The mask defines the configurations and parameter represented in the operation (contents on request).

PAra								
Name	r/w	Adr. I	eger	real	Typ	Value/off		Description
Conf	r/w	base 1 dP 2 dP 3 dP	1 8193 16385 24577	32770	Int	0... 2	\square	Start/Stop and abortion of the configuration mode $0=$ End of configuration 1 =Start of configuration 2 =Abort configuration

9 ohnE

Signa

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
UPD	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 95 \\ 8287 \\ 16479 \\ 24671 \end{array}$	32958	Enum	Enum_Aenderungsflag	Status message indicating that parameter / configuration have been changed via the front panel.
0 No change via the front panel keys.							
1 A change has been made via the front panel keys, which must be processed.							

Hw.Opt	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 200 \\ 8392 \\ 16584 \\ 24776 \end{array}$	33168	Int	0... 65535	\square	
Sw.0p	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 201 \\ 8393 \\ 16585 \\ 24777 \end{array}$	33170	Int	0... 255	\square	Software version XY M ajor and Minor Release (e.g. $21=$ Version 2.1). The software version specifies the firmware in the unit. For the correct interaction of E-Tool and device, it must match the operating version (OpVersion) in the E-Tool.
Bed.V	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 202 \\ 8394 \\ 16586 \\ 24778 \end{array}$	33172	Int	0... 255	\square	Operating version (numeric value). For the correct interaction of E -Tool and device, the software version and operating version must match.
Unit	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 203 \\ 8395 \\ 16587 \\ 24779 \end{array}$	33174	Int	0... 255	\square	Identification of the device.
S.Vers	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 204 \\ 8396 \\ 16588 \\ 24780 \end{array}$	33176	Int	100... 255	\square	The sub-version number is given as an additional index for precise definition of software version.
Uident	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 910 \\ 9102 \\ 17294 \\ 25486 \end{array}$	34588	Text	\cdots	\square	Device identification. Via this M odbus address, up to 14 data units (28 bytes) can be defined. Bytes 1-15 order number of the device Bytes 16-19 Ident number 1 Bytes $20+21$ Ident number 2 Bytes 22-25 OEM number Bytes 26-28 Software order number
IntUnitD	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \\ & \hline \end{aligned}$	$\begin{array}{r} 911 \\ 9103 \\ 17295 \\ 25487 \end{array}$	34590	Text	...	\square	Internal device data

9 ohnE

signal

Name	r/w	Adr. In	ger	real	Typ	Value/off		Description
St.Ala	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 250 \\ 8442 \\ 16634 \\ 24826 \end{array}$	33268	Int	0... 31	\square	Alarm status: Bit-wise coded status of the individual alarms, e.g. exceeded limit value or Loop.

Bit 0 Existing/stored exceeded limit 1
Bit 1 Existing/stored exceeded limit 2
Bit 2 Existing/stored exceeded limit 3
Bit 3 Not used
Bit 4 Existing/stored loop alarm
Bit 5 Existing/stored heating current alarm
Bit 6 Existing/stored SSR alarm
Bit 7 Not used
Bit 8 Existing exceeded limit 1
Bit 9 Existing exceeded limit 2
Bit 10 Existing exceeded limit 3
Bit 11 Not used
Bit 12 Existing loop alarm
Bit 13 Existing heating current alarm
Bit 14 Existing SSR alarm
Bit 15 Not used

St.Do	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 251 \\ 8443 \\ 16635 \\ 24827 \end{array}$	33270	Int	0... 31	\square	Status of the digital outputs Bit 0 digital output 1 Bit 1 digital output 2 Bit 2 digital output 3 Bit 3 digital output 4 Bit 4 digital output 5 Bit 5 digital output 6
St.Ain	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 252 \\ 8444 \\ 16636 \\ 24828 \end{array}$	33272	Int	0... 7	\square	Bit-coded status of the analog input (fault, e.g. short circuit)

Bit 0 Break at Input 1
Bit 1 Reversed polarity at Input 1
Bit 2 Short circuit at Input 1
Bit 3 Not used
Bit 4 Break at Input 2
Bit 5 Reversed polarity at Input 2
Bit 6 Short-circuit at Input 2
Bit 7 Not used
Bit 8 Break at Input 3 (only KS 90)
Bit 9 Reversed polarity at Input 3 (only KS 90)
Bit 10 Short-circuit at Input 3 (only KS 90)
Bit 11 Not used

9 ohnE

Signa

Name	r/w	Adr. Integer	real	Typ	Value/off	Description		
St.Di	r	base	253	33274	Int	$0 \ldots 7$	\square	Status of the digital inputs or of push-buttons (binary coded).
		$1 d \mathrm{dP}$	8445					
		2 dP	16637					
		$3 d P$	24829					

Bit 0 Input 1
Bit 1 Input 2
Bit 2 Input 3 Bit 8 Status of ' F ' key Bit 9 Status of 'A/M ' key Bit 10 Status of 'Sel' key Bit 11 Status of 'Down' key Bit 12 Status of 'Up' key Bit 13 Status of 'Loc' key

F.Di	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 303 \\ 8495 \\ 16687 \\ 24879 \end{array}$	33374	Int	0... 1	\square	Forcing of digital inputs. Forcing involves the external operation of at least one input. The instrument takes over this input value (preset value for inputs from a superordinate system, e.g. for a function test.)

Bit 0 Forcing of digital input 1
Bit 1 Forcing of digital input 2
Bit 2 Forcing of digital input 3
Bit 3 Forcing of digital input 4
Bit 4 Forcing of digital input 5

F.Do	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 304 \\ 8496 \\ 16688 \\ 24880 \end{array}$	33376	Int	0... 15	\square	Forcing of digital outputs. Forcing involves the external operation of at least one output. The instrument has no influence on this output (use of free outputs by superordinate system).

10 ohnE1

Siona								
Name	r/w	Adr. In	eger	real	Typ	Value/off		Description
In. 1	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 232 \\ 8424 \\ 16616 \\ 24808 \end{array}$	33232	Float	-1 ...	\square	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
In.1r	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 240 \\ 8432 \\ 16624 \\ 24816 \end{array}$	33248	Float	-1 ...	\square	M easurement value before the measurement value correction (unprocessed).
F.Inp	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 300 \\ 8492 \\ 16684 \\ 24876 \end{array}$	33368	Float	-1 ...	\square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

11 ohnE2

Signal								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
In. 2	r	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}\right. \\ \hline \end{array}$	$\begin{array}{r} 233 \\ 8425 \\ 16617 \\ 24809 \end{array}$	33234	Float	-1 ...	口	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
In.2r	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 241 \\ 8433 \\ 16625 \\ 24817 \end{array}$	33250	Float	-1 ...	\square	M easurement value before the measurement value correction (unprocessed).
F.Inp	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 301 \\ 8493 \\ 16685 \\ 24877 \end{array}$	33370	Float	-1 ...	\square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)

12 ohnE3

Sfigna								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
In. 3	r	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{PP} \\ 3 \mathrm{dP} \\ \hline \end{array}$	$\begin{array}{r} 234 \\ 8426 \\ 16618 \\ 24810 \end{array}$	33236	Float	-1 ...	\square	M easurement value after the measurement value correction (e.g. with offset or 2-point correction, and scaling).
In.3r	r	$\begin{array}{\|l} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \end{array}$	$\begin{array}{r} 242 \\ 8434 \\ 16626 \\ 24818 \end{array}$	33252	Float	-1 ...	\square	M easurement value before the measurement value correction (unprocessed).
F.Inp		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 302 \\ 8494 \\ 16686 \\ 24878 \end{array}$	33372	Float	-1 ...	\square	Forcing the value for an analog input INP. Forcing involves the external operation of an input. The instrument takes over the value at this input like a measurement value (preset value for inputs from a superordinate system, e.g. for a function test.)
F.Out1	r/w	$\begin{array}{\|l} \text { base } \\ 1 d P \\ 2 d P \\ 3 d P \end{array}$	$\begin{array}{r} 305 \\ 8497 \\ 16689 \\ 24881 \end{array}$	33378	Float	0...120	口	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

13 ohnE4

Sig								
Name	r/w	Adr. Integer		real	Typ	Value/off	Description	
F.Out2	r/w	$\begin{array}{\|l} \left\|\begin{array}{l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \\ \hline \end{array}\right\| \end{array}$	$\begin{array}{r} 306 \\ 8498 \\ 16690 \\ 24882 \end{array}$	33380	Float	0... 120	\square	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

othr

dELY	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 183 \\ 8375 \\ 16567 \\ 24759 \end{array}$	33134	nt	0...200 \square	Response delay [ms] (only visible with OPTION). Additional delay time before the received message may be answered on the M odbus. (M ight be necessary, if the same line is used for transmit/receive.)
dp.Ad		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 195 \\ 8387 \\ 16579 \\ 24771 \end{array}$	33158	Int	0...126 \square	Address of the device on the PROFIBUS. The address identifies the device clearly.
bc.uP		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 196 \\ 8388 \\ 16580 \\ 24772 \end{array}$	33160	Enum	Enum_BackupControl	behaviour as backup controller. The control function is done by the master. The instrument provides the display, reads the measured values and outputs the correcting variable. If bus communication (or the master) fails, the controller changes to normal operation.

The backup function is not active.
$1 \quad$ With backup function. Operates in the positioner mode as long as bus communication is functional. If bus communication (or the master) fails, the controller changes to normal operation.

14 othr

Con=								
Name	r/w	Adr. I	ger	real	Typ	Value/off		Description
dP	r/w	base 1 dP 2 dP 3 dP	171 8363 16555 24747	33110	Enum	Enum_dP		Decimal point (max. no of decimals). Format of the measured value display.
0 no digit behind the decimal point								
1 Display has one decimal.								
						2 Display has two decimals.		
						3 Display has three decimals.		

LEd	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 190 \\ 8382 \\ 16574 \\ 24766 \end{array}$	33148	Enum	Enum_Led		M eaning of the signalling LEDs. Selection of a combination of the displayable signals.
						10 Th		The digital outputs OUT1, OUT2, OUT3, and OUT4 are displayed.
						11 Displa	Display of controller output y1 (heating / open), alarm1, alarm2, alarm3	
						12	Display of controller output y1 (heating / open), controller output y2 (cooling / close), alarm1, alarm2	
						13 D	Display of controller output y2 (cooling / close), controller output y1 (heating / open), alarm1, alarm2	
						20 Disp	Display of controller output y1 (heating / open), controller output y2 (cooling / close), and the programmer outputs Track, Track2.	
						21	Display of controller output y2 (cooling / close), controller output y1 (heating / open), and the programmer outputs Track1, Track2.	
						22	Display of the programmer outputs Track1, Track2, Track3, and Track4.	

dISP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 172 \\ 8364 \\ 16556 \\ 24748 \end{array}$	33112	Int	0... 10	\square	Brightness of the display.
C.dEL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 184 \\ 8376 \\ 16568 \\ 24760 \end{array}$	33136	Int	0... 200	\square	For both interfaces, M odbus only. Additional acceptable delay time betw een 2 received bytes, before "end of message" is assumed. This time is needed if data is not transmitted continousely by the modem.
FrEq	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 150 \\ 8342 \\ 16534 \\ 24726 \end{array}$	33068	Enum	Enum_FrEq		Switchover of the applied mains frequency $50 / 60 \mathrm{~Hz}$, thereby better adaptation of the input filter for hum suppression.
01								

14 othr

ConF

Name	r/w	Adr.	ger	real	Typ	Value/off		Description
CyCl		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 186 \\ 8378 \\ 16570 \\ 24762 \end{array}$	33140	Int	0... 200	\square	Cycle time (in seconds) during which the M odbus master transmits its message on the bus.
AdrO		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 187 \\ 8379 \\ 16571 \\ 24763 \end{array}$	33142	Int	1... 65535	\square	Target address to which the data specified with AdrU are output on the bus.
AdrU		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 188 \\ 8380 \\ 16572 \\ 24764 \end{array}$	33144	Int	1... 65535	\square	M odbus address of the data output on the bus by the M odbus master.
Numb		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 189 \\ 8381 \\ 16573 \\ 24765 \end{array}$	33146	Int	0... 100	\square	Quantity of data that are to be transmitted from the M odbus master.
dp.ra		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 197 \\ 8389 \\ 16581 \\ 24773 \end{array}$	33162	Int	0... 911	\square	Addresses of the data that are to be read out of the device via the PROFIBUS (57 values).
dp.wr		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 198 \\ 8390 \\ 16582 \\ 24774 \end{array}$	33164	Int	0... 911	\square	Addresses of the data that are to be written into the device via the PROFIBUS (57 values).

14 othr

Signa

Name FbF. 1	r/w	Adr. Integer		real	Typ	Value/off		Description
	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 212 \\ 8404 \\ 16596 \\ 24788 \end{array}$	33192	Enum	Break		Sensor break at input INP1. Typical causes and suggested remedies: Sensor fault: replace INP1 sensor. W iring fault: check connections of INP1. (As a process value via fieldbus interface not writable!)
						0	No fault,	resetting of the sensor break alarm possible (Reset).
						1	The senso operator n	ult alarm has been triggered and stored; the fault is no longer present. The acknow ledge the error message in order to delete it from the error list.
							Sensor bre	The sensor is defective or there is a wiring fault.

14 othr

Signal

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
HCA	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 218 \\ 8410 \\ 16602 \\ 24794 \end{array}$	33204	Enum	HeatCurr	Heating current alarm.Possible fault s are an open heating current circuit with current I < heating current limit, or current I > heating current limit (depending on configuration), or defective heater band.Suggested remedy: check heating current circuit, replace heater band if necessary. (As a process value via fieldbus interface not writable!)
						0 No	ting of the heating current alarm possible (Reset).
						1 A	ent fault has occurred and has been stored.

14 othr

Signa

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 223 \\ 8415 \\ 16607 \\ 24799 \end{array}$	33214	Enum	Limit		Limit value 1 exceeded. Hint for trouble-shooting: check the process. (As a process value via fieldbus interface not writable!)
						0	No fault,	resetting of the limit value alarm possible (Reset).
						1	The limit	e has been exceeded, and the fault has been stored.
						2	The limit limits.	has been exceeded; the monitored (measurement) value is outside the set

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 225 \\ 8417 \\ 16609 \\ 24801 \end{array}$	33218	Enum	Limit		Limit value 3 exceeded. Hint for trouble-shooting: check the process. (As a process value via fieldbus interface not writable!)
						0	No fault,	resetting of the limit value alarm possible (Reset).
						1	The limit	has been exceeded, and the fault has been stored.
						2	The limit limits.	has been exceeded; the monitored (measurement) value is outside the set

14 othr

Signal

14 othr

Signal

Name E. 3	r/w	Adr. Integer		real	Typ	Value/off		Description
	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 403 \\ 8595 \\ 16787 \\ 24979 \end{array}$	33574	Enum	ConfErr		configuration fault. Typical causes and suggested remedies: M issing or faulty configuration: check interactions in the configuration and parameter settings. (As a process value via fieldbus interface not writable!)
0 No configuration error								
						2		figuration error. The configuration is missing or wrong, or it does not match settings.

dAc	r/w	base 1 dPP 2 dP 3 dP	404 8596 16788 24980	33576	Enum	Enum_DacAlarm	DAC alarm, possibly with cause. On all controllers with position feedback $Y p$, the actuator can be monitored for incorrect operation, e.g. defective motor or excessive play due to wear. In all cases, the controller changes into manual operation and switches the outputs off. (As a process value via fieldbus interface not writable!)
0 no error							
						Output is blocked - check the drive for blockage After solving the technical problem the DAC errror can be acknowledged in the error list. Thereafter the controller works again in normal operation mode.	
						W rong method of operation - rong phasing, defect motor capacitor After solving the technical problem the DAC errror can be acknowledged in the error list. Thereafter the controller w orks again in normal operation mode.	
						Fail at $Y p$ measurement - check the connection to the $Y p$ input After solving the technical problem the DAC errror can be acknowledged in the error list. Thereafter the controller w orks again in normal operation mode.	
						Calibration error - manual calibration necessary After solving the technical problem the DAC errror can be acknowledged in the error list. Thereafter the controller works again in normal operation mode.	

14 othr

Signa

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
dP. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 413 \\ 8605 \\ 16797 \\ 24989 \end{array}$	33594	Enum	Problem_dp	PROFIBUS parameter fault. Possible cause: incorrect parameters in DP telegram. Suggested remedy: check DP telegram parameters in the master (As a process value via fieldbus interface not writable!)
						0 No	resetting possible (Reset).
						2 A P	It has occurred, there is no communication.

15 Out. 1

ConF

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4155 \\ 12347 \\ 20539 \\ 28731 \end{array}$	41078	Enum	Enum_Lim3	Output function: Signal limit 3
						0 not active	

LP.AL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4157 \\ 12349 \\ 20541 \\ 28733 \end{array}$	41082	Enum	Enum_OUT_LPAL	Output function: Signal Interruption alarm (LOOP) The overall control loop is monitored and the process value has to change with an output signal of maximum value, else loop alarm is generated.
not active							
						1 The loop alarm (=open loop alarm) is assigned to this output.	

FAi. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4162 \\ 12354 \\ 20546 \\ 28738 \end{array}$	41092	Enum	Enum_FAi1	Output function: Signal INP1 fault. The fail signal is generated, if a fault occurs at the analog Input IN P1.
0 not activer							

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
FAi. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4163 \\ 12355 \\ 20547 \\ 28739 \end{array}$	41094	Enum	Enum_FAiz	Output function: Signal INP2 fault. The fail signal is generated, if a fault occurs at the analog Input INP2.
0 not active							
						1 The output sends the error message 'INP2 fault'.	

CALL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4169 \\ 12361 \\ 20553 \\ 28745 \end{array}$	41106	Enum	Enum_CALL	Output: Operator call. At the end of a program segment, a contact is set, e.g. for an acoustic signal. This indicates to the operator that a certain program status has been reached, and operator action is required. Operator calling is used, if the program may only be continued after a check or some kind of operator action.
0 not active							
						1 The output is switched by an operator call.	

15 Out. 1

ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
dP.Er	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4175 \\ 12367 \\ 20559 \\ 28751 \end{array}$	41118	Enum	Enum_DP_ERR	Output function: Signal Fault in the Profibus communication. This output is set when a fault in the Profibus communication occurs. There is no more communication with this device.
0 Not active							
						1 This output sends the Profibus fault.	

16 Out. 2

Con=

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
O.Act		$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4250 \\ 12442 \\ 20634 \\ 28826 \end{array}$	41268	Enum	Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) sw itches the output OFF.
						0 direct	lly open
						1 inve	mally closed

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
Y. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4252 \\ 12444 \\ 20636 \\ 28828 \end{array}$	41272	Enum	Enum_Y2	Output function: Controller output Y2. Caution: Do not confuse the controller output Y2 with the parameter 'Fixed output Y2' !
0 not active							
						1 This output provides the controller output Y2.	

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4253 \\ 12445 \\ 20637 \\ 28829 \end{array}$	41274	Enum	Enum_Lim1	Output function: Signal limit 1
0 not active 1 The output is activated by an alarm from limit value 1.							

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4254 \\ 12446 \\ 20638 \\ 28830 \end{array}$	41276	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit value 2.							

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4255 \\ 12447 \\ 20639 \\ 28831 \end{array}$	41278	Enum	Enum_Lim3	Output function: Signal limit 3
0 not active 1 The output is activated by an alarm from limit value 3.							

16 Out. 2

ConF

16 Out. 2

ConF

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
PrG. 4	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4268 \\ 12460 \\ 20652 \\ 28844 \end{array}$	41304	Enum	Enum_PrG4	Output function: Signal programmer's control output no. 4. A control output is one of the four digital signals that can be operated segment-wise by a program.
0 not active							
						1 Control output 4 is assigned to this output.	

CALL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4269 \\ 12461 \\ 20653 \\ 28845 \end{array}$	41306	Enum	Enum_CALL	Output: Operator call. At the end of a program segment, a contact is set, e.g. for an acoustic signal. This indicates to the operator that a certain program status has been reached, and operator action is required. Operator calling is used, if the program may only be continued after a check or some kind of operator action.
0 not active							
						1 The output is switched by an operator call.	

SIg							
Name	r/w	Adr. In	teger	real	Typ	Value/off	Description
Out2	r	base	4280	41328	Enum	Enum_Ausgang	Status of the digital output
		1 dP	12472				
		2 dP	20664				
		3 dP	28856				
						0 off	
						1 on	

F.Do2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4281 \\ 12473 \\ 20665 \\ 28857 \end{array}$	41330	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
						0 off	
						1 on	

17 Out. 3

ConF

Lim. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4353 \\ 12545 \\ 20737 \\ 28929 \end{array}$	41474	Enum	Enum_Lim1	Output function: Signal limit 1
0 not active 1 The output is activated by an alarm from limit value 1.							

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4354 \\ 12546 \\ 20738 \\ 28930 \end{array}$	41476	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit valu							

17 Out. 3

ConF

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
Lim. 3	r/w	base	4355	41478	Enum	Enum_Lim3	Output function: Signal limit 3
		1 dP	12547				
		2 dP	20739				
		3 dP	28931				
						$0 \quad \text { not }$	
						1 Th	activated by an alarm from limit value 3.

Con=

Name	r/w Adr. Integer			real	Typ	Value/off Description	
FAi. 3	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 4364 \\ 12556 \\ 20748 \\ 28940 \end{array}$	41496	Enum	Enum_FAi3	Output function: Signal INP3 fault. The fail signal is generated, if a fault occurs at the analog Input IN P3.
0 not active							
						1 The output sends the error message 'INP3 fault'.	

| CALL | r/w | base 4369
 41506
 ldP 12561
 $2 d P$ 20753
 $3 d P$ 28945 | Enum | Enum_CALL | Output: Operator call.
 At the end of a program segment, a contact is set, e.g. for an
 acoustic signal. This indicates to the operator that a certain
 program status has been reached, and operator action is required.
 Operator calling is used, if the program may only be continued after
 a check or some kind of operator action. |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- |

17 Out. 3

ConF

St							
Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
Out1	r	base	4380	41528	Enum	Enum_Ausgang	Status of the digital output
			12572				
		2 dP	20764				
			28956				
						0 off	
						1 on	

17 Out. 3

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
F.Dol	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4381 \\ 12573 \\ 20765 \\ 28957 \end{array}$	41530	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
						$\begin{array}{ll} 0 & \text { off } \\ 1 & \text { on } \end{array}$	

F.Out1	r/w	$\begin{array}{\|l} \text { base } \\ 1 \mathrm{dP} \\ 2 \mathrm{dP} \\ 3 \mathrm{dP} \end{array}$	$\begin{array}{r} 4382 \\ 12574 \\ 20766 \\ 28958 \end{array}$	41532	Float	0... 120	\square	Forcing value of the analog output. Forcing involves the external operation of an output, i.e. the instrument has no influence on this output. (Used for the operation of free outputs e.g. by a supervisory PLC.)

18 Out. 4

ConF

Name	r/w Adr. Integer real Typ Value/off Description							
0.tYP	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 4470 \\ 12662 \\ 20854 \\ 29046 \end{array}$	41708	Enum	Enum_OtY		Signal type selection OUT
						- Relay / logic		
						$1 \quad 0 . . .20 \mathrm{~mA}$ continuous		
						$4 \ldots 20 \mathrm{~mA}$ continuous		
						$0 . . .10 \mathrm{~V}$ continuous		
						2... 10 V continuous		
						transmitter supply		

18 Out. 4

ConF

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
Lim. 1	r/w	base	4453	41674	Enum	Enum_Lim1	Output function: Signal limit 1
		1 dP	12645				
		2 dP	20837				
		3 dP	29029				
						0 not	
						1 The	activated by an alarm from limit value 1.

Lim. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4454 \\ 12646 \\ 20838 \\ 29030 \end{array}$	41676	Enum	Enum_Lim2	Output function: Signal limit 2
0 not active 1 The output is activated by an alarm from limit value 2.							

Lim. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4455 \\ 12647 \\ 20839 \\ 29031 \end{array}$	41678	Enum	Enum_Lim3	Output function: Signal limit 3
0 not active 1 The output is activated by an alarm from limit value 3.							

18 Out. 4

ConF

Name FAi. 1	r/w	Adr. Integer		real	Typ	Value/off Description	
	r/w	base 1 dPP 2 dP 3 dP	$\begin{array}{r} 4462 \\ 12654 \\ 20846 \\ 29038 \end{array}$	41692	Enum	Enum_FAi1	Output function: Signal INP1 fault. The fail signal is generated, if a fault occurs at the analog Input IN P1.
0 not active							
						1 Th	The output sends the error message 'INP1 fault'.

PrG. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4465 \\ 12657 \\ 20849 \\ 29041 \end{array}$	41698	Enum	Enum_PrG1	Output function: Signal programmer's control output no. 1. A control output is one of the four digital signals that can be operated segment-wise by a program.
						not active	
						Control output 1 is assigned to this output.	

18 Out. 4

ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
CALL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4469 \\ 12661 \\ 20853 \\ 29045 \end{array}$	41706	Enum	Enum_CALL	Output: Operator call. At the end of a program segment, a contact is set, e.g. for an acoustic signal. This indicates to the operator that a certain program status has been reached, and operator action is required. Operator calling is used, if the program may only be continued after a check or some kind of operator action.
not active							
						1 The output is switched by an operator call.	

Out. 0	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4471 \\ 12663 \\ 20855 \\ 29047 \end{array}$	41710	Float	-1	...	\square	Lower scaling limit of the analog output (corresponds to 0\%). If current and voltage signals are used as output values, the display can be scaled to the output value in the Parameter Level. The output value of the lower scaling point is indicated in the respective electrical unit (mA / V).
Out. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4472 \\ 12664 \\ 20856 \\ 29048 \end{array}$	41712	Float	-1	...	\square	Upper scaling limit of the analog output (corresponds to 100\%). If current and voltage signals are used as output values, the display can be scaled to the output value in the Parameter Level. The output value of the upper scaling point is indicated in the respective electrical unit (mA / V).
0.Src	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4473 \\ 12665 \\ 20857 \\ 29049 \end{array}$	41714	Enum		m_OSr		Signal source of the analog output (visible not with all output signal types 0.TYP).
0 not used									
1 Controller output y1 (continuous)									
						2 Controller output y2 (continuous)			
						3	process value		
						4 E		The effective setpoint W eff, which is used for control. Example: The gradient changes the effective setpoint until it reaches the internal (target) setpoint.	
						5	control deviation xw (process value - set-point)= relative alarm Note: M onitoring with the effective set-point Weff. For example using a ramp it is the changing set-point, not the target set-point of the ramp.		
						6	Position feedback signal Yp.		
						7	measured value INP1		
						8	measured value INP2		
						9	measured value INP3		

0.FAI	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4474 \\ 12666 \\ 20858 \\ 29050 \end{array}$	41716	Enum	Enum_OFai	fail behaviour
						0 upscale	
						1 do	

19 Out. 5

ConF

19 Out. 5

ConF

19 Out. 5

Con=							
Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
CALL	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4569 \\ 12761 \\ 20953 \\ 29145 \end{array}$	41906	Enum	Enum_CALL	Output: Operator call. At the end of a program segment, a contact is set, e.g. for an acoustic signal. This indicates to the operator that a certain program status has been reached, and operator action is required. Operator calling is used, if the program may only be continued after a check or some kind of operator action.
0 not active							
						1 The output is switched by an operator call.	

dP.Er	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4575 \\ 12767 \\ 20959 \\ 29151 \end{array}$	41918	Enum	Enum_DP_ERR	Output function: Signal Fault in the Profibus communication. This output is set when a fault in the Profibus communication occurs. There is no more communication with this device.
						Not active	
						This output sends the Profibus fault.	

20	Out. 6							
-	Cor							
	Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
	O.Act	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 4650 \\ 12842 \\ 21034 \\ 29226 \end{array}$	42068	Enum	Enum_OAct	Operating sense of the switching output. Direct: Active function (e.g. limit value) switches the output ON; Inverse: Active function (e.g. limit value) switches the output OFF.
	0 direct / normally open							
	1 inverse / normally closed							

20 Out. 6

ConF

Lim. 3	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4655 \\ 12847 \\ 21039 \\ 29231 \end{array}$	42078	Enum	Enum_Lim3	Output function: Signal limit 3
						0 not	

20 Out. 6

ConF

Name	r/w	Adr. In	ger	real	Typ	Value/off	Description
HC.SC	r / w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4659 \\ 12851 \\ 21043 \\ 29235 \end{array}$	42086	Enum	Enum_HCSC	Output function: Signal Solid-state relay (SSR) short circuit. The short circuit alarm of the SSR is triggered, if a current is detected in the heating circuit, although the controller output is switched off.
0 not active							
						1 Output activated by an SSR fault.	

P.End	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4661 \\ 12853 \\ 21045 \\ 29237 \end{array}$	42090	Enum	Enum_PEnd	Output function: Signal Program end. This message is available when the program has been completed (only when configured as a program controller).
0 not active							
						1 This output is activated by the message 'Program end'.	

PrG. 1	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4665 \\ 12857 \\ 21049 \\ 29241 \end{array}$	42098	Enum	Enum_PrG1	Output function: Signal programmer's control output no. 1. A control output is one of the four digital signals that can be operated segment-wise by a program.
0 not active							
						1 Control output 1 is assigned to this output.	

20 Out. 6

ConF

Name	r/w	Adr. In	eger	real	Typ	Value/off	Description
PrG. 3	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4667 \\ 12859 \\ 21051 \\ 29243 \end{array}$	42102	Enum	Enum_PrG3	Output function: Signal programmer's control output no. 3. T A control output is one of the four digital signals that can be operated segment-wise by a program.
0 not active							
						1 Control output 3 is assigned to this output.	

Signal

F.Do4	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 4681 \\ 12873 \\ 21065 \\ 29257 \end{array}$	42130	Enum	Enum_Ausgang	Forcing of this digital output. Forcing involves the external operation of an output. The instrument has no influence on this output (use of free outputs by superordinate system).
0 off							
						$\begin{array}{ll}0 & \text { off } \\ 1 & \text { on }\end{array}$	

21 PAr. 2

para								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
Pb12	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5030 \\ 13222 \\ 21414 \\ 29606 \end{array}$	42828	Float	0,1...	\square	Proportional band 1 (heating) in engineering unit (e.g. ${ }^{\circ} \mathrm{C}$) of the 2 nd parameter set. The Pb defines the ratio betw een output value and control deviation. The smaller the value of Pb is, the stronger is the control response for a specific control deviation. Too large and too small values for Pb lead to process oscillations (hunting).
Pb22	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5031 \\ 13223 \\ 21415 \\ 29607 \end{array}$	42830	Float	0,1...	\square	Proportional band 2 (cooling) in engineering unit (e.g. ${ }^{\circ} \mathrm{C}$) of the 2nd parameter set. The Pb defines the ratio betw een output value and control deviation. The smaller the value of Pb is, the stronger is the control response for a specific control deviation. Too large and too small values for Pb lead to process oscillations (hunting).
ti22	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5033 \\ 13225 \\ 21417 \\ 29609 \end{array}$	42834	Float	0...	\square	Integral action time 2 (cooling) [s]. Second parameter set. Ti is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
ti12	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5032 \\ 13224 \\ 21416 \\ 29608 \end{array}$	42832	Float	0...	\square	Integral action time 1 (heating) [$[$]. Second parameter set. Tii is the time constant of the integral portion. The smaller Ti is, the faster is the response of the integral action. Ti too small: Control tends to oscillate. Ti too large: Control is sluggish and needs a long time to line out.
td12	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 5034 \\ 13226 \\ 21418 \\ 29610 \end{array}$	42836	Float	0...	\square	Derivative action time 1 (heating) [5$]$, second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of $T d$ is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.
td22	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 5035 \\ 13227 \\ 21419 \\ 29611 \end{array}$	42838	Float	0...	\square	Derivative action time 2 (cooling) [s], second parameter set. Td is the time constant of the derivative portion. The faster the process value changes, and the larger the value of Td is, the stronger will be the derivative action. Td too small: Very little derivative action. Td too large: Control tends to oscillate.

	ProG							
-	ConF							
	Name	r/w	Adr. In	teger	real	Typ	Value/off	Description
	t.bAS	r/w	$\begin{aligned} & \hline \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6030 \\ 14222 \\ 22414 \\ 30606 \end{array}$	\|44828	Enum	Enum_tbAS	Definition of the programmer's time base in hours using minutes, or in minutes using seconds.
							0 Ho	inutes [mm]
							1 Mi	: Seconds [ss]

22	ProG							
-	PArA							
	Name	r/w	Adr. I	ger	real	Typ	Value/off	Description
	Pr.no	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 6000 \\ 14192 \\ 22384 \\ 30576 \end{array}$	44768	Enum	Enum_PrgNoPar	Program number (nominal). The program number (nominal) determines which program is to be started next. Running programs are not affected. The selected program is only started after a reset or restart.
							1 Prog. 01	
							2 Prog. 02	
							3 Prog. 03	
							4 Prog. 04	
							5 Prog. 05	
							6 Prog. 06	
							$7 \quad$ Prog. 07	
							8 Prog. 08	
							9 Prog. 09	
							10 Prog. 10	
							11 Prog. 11	
							12 Prog. 12	
							13 Prog. 13	
							14 Prog. 14	
							15 Prog. 15	
							$16 \quad$ Prog. 16	

b.Lo	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6100 \\ 14292 \\ 22484 \\ 30676 \end{array}$	44968	Float	0...	\square	Lower bandw idth limit. The bandwidth monitor is valid for all segments of an individual program. If the bandwidth is exceeded, the programmer is stopped. The program continues, if the process value returns within the defined monitoring limits.
b.Hi	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6101 \\ 14293 \\ 22485 \\ 30677 \end{array}$	44970	Float	0...	\square	Upper bandw idth limit. The bandwidth monitor is valid for all segments of an individual program. If the bandwidth is exceeded, the programmer is stopped. The program continues, if the process value returns within the defined monitoring limits.
d. 00	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6134 \\ 14326 \\ 22518 \\ 30710 \end{array}$	45036	Enum	ENUM	_Spuren	Reset value for control outputs 1...4. A program can control up to four digital signals: the control outputs $1 . . .4$. The reset value of the control output contains the combination of these signals, which are output together with the controller's internal setpoint, if the programmer is not active.
0 0-0.0-0								
1 1-0-0-0								
2 0-1-0-0								
3 1-1-0-0								
4 0-0-1-0								
5 1-0-1-0								
6 0-1-1-0								
7 1-1-1-0								
8 0-0-0-1								
9 1-00-0-1								
10 0-1-0-1								
11 1-1-0-1								
12 0-0-1-1								
13 1-0-1-1								
14 0-1-1-1								
15 1-1-1-1								

SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6102 \\ 14294 \\ 22486 \\ 30678 \end{array}$	44972	Float	-1	...	\square	End setpoint of segment 1. This is the target setpoint that is reached at the end of the first segment. The target setpoint is approached from the previous valid setpoint (when starting the 1st segment, matching to process value!). When the program is completed, the controller continues with the last target setpoint reached.
Pt	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6103 \\ 14295 \\ 22487 \\ 30679 \end{array}$	44974	Float	0...		\square	Segment time/gradient 1 . The duration of a segment can be defined directly, or by using the segment time and the setpoint difference (SP - segment starting setpoint). Whether the setting is for segment time or the gradient, is defined by means of the segment type parameter (tYPE).
d.Out	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6136 \\ 14328 \\ 22520 \\ 30712 \end{array}$	45040	Enum	ENU	M_Spuren		Control outputs 1...4-1. A program can control up to four digital signals: the control outputs 1...4. A combination of these signals can be assigned to every segment, whereby the signals are operated while the segment is running. For access to the controller's outputs, the signals must be assigned accordingly.
0 0-0.0-0									
							1 1-0-0-0		
2 0-1-0-0									
3 1-1-0-0									
4 0-0-1-0									
5 1-0-1-0									
6 0-1-1-0									
7 1-1-1-0									
8 0-0.0-1									
9 1-0.0-1									
10 0-1-0-1									
11 1-1-0-1									
						12 0-0-1-1			
						13 1-0-1-1			
						14 0-1-1-1			
						15 1-1-1-1			

22 ProG

PArA

22	ProG							
-	PArA							
	Name	r/w	Adr. I	eger	real	Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 6139 \\ 14331 \\ 22523 \\ 30715 \end{array}$	45046	Enum	Enum_SegTyp	Segment type of segment 3 . The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
							0 time to	
							1 rate to	
							2 The fin	oint of the previous segment is kept constant for the duration 'Pt'.
							3 step to	
							4 time to	int and wait
							5 rate to	int and wait
							$6 \quad$The fin of a se by pres	oint of the previous segment is kept constant for the duration 'Pt'. At the end the programmer enters the Stop mode (Run LED is off), and can be restarted Start/Stop key (more than 3 s), via the interface, or a digital input.
							7 step to	int and wait
							$8 \quad$The las reached	ent in a program is the end segment. When the end segment has been last setpoint is maintained.

22 ProG

PArA

22 ProG
 PArA

22 ProG

PArA

22 ProG
 PArA

22	ProG							
-	PArA							
	Name	r/w	Adr. I	eger	real	Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 6155 \\ 14347 \\ 22539 \\ 30731 \end{array}$	45078	Enum	Enum_SegTyp	Segment type of segment 11. The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
							0 time to	
							1 rate to	
							2 The fin	oint of the previous segment is kept constant for the duration 'Pt'.
							3 step to	
							4 time to	int and wait
							5 rate to	int and wait
							$6 \quad$The fin of a se by pres	oint of the previous segment is kept constant for the duration 'Pt'. At the end the programmer enters the Stop mode (Run LED is off), and can be restarted Start/Stop key (more than 3 s), via the interface, or a digital input.
							7 step to	int and wait
							$8 \quad$The las reached	ent in a program is the end segment. When the end segment has been last setpoint is maintained.

22	ProG							
-	PArA							
	Name	r/w	Adr. Integer real			Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2dP 3 dPP	6157 14349 22541 30733	45082	Enum	Enum_SegTyp	Segment type of segment 12. The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
	0 time to set-point							
							1 rate to set-point	
							The final setpoint of the previous segment is kept constant for the duration 'Pt'.	
							step to set-point	
							time to set-point and wait	
							rate to set-point and wait	
							The final setpoint of the previous segment is kept constant for the duration 'Pt'. At the end of a segment, the programmer enters the Stop mode (Run LED is off), and can be restarted by pressing the Start/Stop key (more than 3 s), via the interface, or a digital input.	
							step to set-point and wait	
							The last segment in a program is the end segment. When the end segment has been reached, the last setpoint is maintained.	

SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6124 \\ 14316 \\ 22508 \\ 30700 \end{array}$	45016	Float	-1	...	\square	End setpoint of segment 12. This is the target setpoint that is reached at the end of the tw elfth segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6125 \\ 14317 \\ 22509 \\ 30701 \end{array}$	45018	Float	0...		\square	Segment time/gradient 12. The duration of a segment can be defined directly, or by using the segment time and the setpoint difference (SP - segment starting setpoint). W hether the setting is for segment time or the gradient, is defined by means of the segment type parameter (tYPE).
d.Out	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6158 \\ 14350 \\ 22542 \\ 30734 \end{array}$	45084	Enum	ENUM	_ Spuren		Control outputs 1...4-12. A program can control up to four digital signals: the control outputs 1...4. A combination of these signals can be assigned to every segment, whereby the signals are operated while the segment is running. For access to the controller's outputs, the signals must be assigned accordingly.
						0	0-0.0-0		
						1	1-0.0-0		
						2	0-1-0-0		
						3	1-1-0-0		
						4	0-0-1-0		
						5	1-0-1-0		
						6	0-1-1-0		
						7	1-1-1-0		
						8	0-0.0-1		
						9	1-0-0-1		
						10	0-1-0-1		
						11	1-1-0-1		
						12	0-0-1-1		
						13	1-0-1-1		
						14	0-1-1-1		
						15	1-1-1-1		

22	ProG							
-	PArA							
	Name	r/w	Adr. I	eger	real	Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 6159 \\ 14351 \\ 22543 \\ 30735 \end{array}$	45086	Enum	Enum_SegTyp	Segment type of segment 13. The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
							0 time to	
							1 rate to	
							2 The fin	oint of the previous segment is kept constant for the duration 'Pt'.
							3 step to	
							4 time to	int and wait
							5 rate to	int and wait
							$6 \quad$The fin of a se by pres	oint of the previous segment is kept constant for the duration 'Pt'. At the end the programmer enters the Stop mode (Run LED is off), and can be restarted Start/Stop key (more than 3 s), via the interface, or a digital input.
							7 step to	int and wait
							$8 \quad$The las reached	ent in a program is the end segment. When the end segment has been last setpoint is maintained.

22	ProG							
-	PArA							
	Name	r/w	Adr. Integer real			Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2dP 3 dPP	6161 14353 22545 30737	45090	Enum	Enum_SegTyp	Segment type of segment 14. The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
	0 time to set-point							
							1 rate to set-point	
							The final setpoint of the previous segment is kept constant for the duration 'Pt'.	
							step to set-point	
							time to set-point and wait	
							rate to set-point and wait	
							The final setpoint of the previous segment is kept constant for the duration 'Pt'. At the end of a segment, the programmer enters the Stop mode (Run LED is off), and can be restarted by pressing the Start/Stop key (more than 3 s), via the interface, or a digital input.	
							step to set-point and wait	
							The last segment in a program is the end segment. When the end segment has been reached, the last setpoint is maintained.	

22	ProG							
-	PArA							
	Name	r/w	Adr. I	eger	real	Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2 dP 3 dP	$\begin{array}{r} 6163 \\ 14355 \\ 22547 \\ 30739 \end{array}$	45094	Enum	Enum_SegTyp	Segment type of segment 15. The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
							0 time to	
							1 rate to	
							2 The fin	oint of the previous segment is kept constant for the duration 'Pt'.
							3 step to	
							4 time to	int and wait
							5 rate to	int and wait
							$6 \quad$The fin of a se by pres	oint of the previous segment is kept constant for the duration 'Pt'. At the end the programmer enters the Stop mode (Run LED is off), and can be restarted Start/Stop key (more than 3 s), via the interface, or a digital input.
							7 step to	int and wait
							$8 \quad$The las reached	ent in a program is the end segment. When the end segment has been last setpoint is maintained.

22	ProG							
-	PArA							
	Name	r/w	Adr. Integer real			Typ	Value/off	Description
	tYPE	r/w	base 1 dP 2dP 3 dPP	6165 14357 22549 30741	45098	Enum	Enum_SegTyp	Segment type of segment 16. The segment type defines the setpoint behaviour for this segment. The setpoint can be held constant or be changed with a ramp or a step function. Continuation to next segment is automatic or manual (define a hold time).
	0 time to set-point							
							1 rate to set-point	
							The final setpoint of the previous segment is kept constant for the duration 'Pt'.	
							step to set-point	
							time to set-point and wait	
							rate to set-point and wait	
							The final setpoint of the previous segment is kept constant for the duration 'Pt'. At the end of a segment, the programmer enters the Stop mode (Run LED is off), and can be restarted by pressing the Start/Stop key (more than 3 s), via the interface, or a digital input.	
							step to set-point and wait	
							The last segment in a program is the end segment. When the end segment has been reached, the last setpoint is maintained.	

SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6132 \\ 14324 \\ 22516 \\ 30708 \end{array}$	45032	Float	-1	...	\square	End setpoint of segment 16. This is the target setpoint that is reached at the end of the 16th segment. The target setpoint is approached from the previous valid setpoint. When the program is completed, the controller continues with the last target setpoint reached.
Pt	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6133 \\ 14325 \\ 22517 \\ 30709 \end{array}$	45034	Float	0...		\square	Segment time/gradient 16. The duration of a segment can be defined directly, or by using the segment time and the setpoint difference (SP - segment starting setpoint). W hether the setting is for segment time or the gradient, is defined by means of the segment type parameter (tYPE).
d.Out	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6166 \\ 14358 \\ 22550 \\ 30742 \end{array}$	45100	Enum	ENUM	_ Spuren		Control outputs 1...4-16. A program can control up to four digital signals: the control outputs 1...4. A combination of these signals can be assigned to every segment, whereby the signals are operated while the segment is running. For access to the controller's outputs, the signals must be assigned accordingly.
						0	0-0.0-0		
						1	1-0.0-0		
						2	0-1-0-0		
						3	1-1-0-0		
						4	0-0-1-0		
						5	1-0-1-0		
						6	0-1-1-0		
						7	1-1-1-0		
						8	0-0.0-1		
						9	1-0-0-1		
						10	0-1-0-1		
						11	1-1-0-1		
						12	0-0-1-1		
						13	1-0-1-1		
						14	0-1-1-1		
						15	1-1-1-1		

22 ProG

Signal

Name	r/w	Adr.	ger	real	Typ	Value/off		Description
St.Prog	r	base 1dP 2dP 3dP	$\begin{array}{r} 6050 \\ 14242 \\ 22434 \\ 30626 \end{array}$	44868	Int	0... 255	\square	The programmer's status contains bit-wise coded data, e.g. which point of the program sequence the program has reached.

Bit 0,1,2 Type of segment
0 : rising
1: falling
2: hold (dwell)
Bit 3 Program 'Run'
Bit 4 Program 'End'
Bit 5 Program 'Reset'
Bit 6 Program 'StartFlankM issing'
Bit 7 Program 'BandHold + FailHold'
Bit 8 Program active

SP.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6051 \\ 14243 \\ 22435 \\ 30627 \end{array}$	44870	Float	-1 0...	\square	The programmer's setpoint is displayed as the effective setpoint while the program is running.
T1.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6052 \\ 14244 \\ 22436 \\ 30628 \end{array}$	44872	Float	0...	\square	Only with a running program. The net (elapsed) time of the programmer is shown in a simplified form as time elapsed since program start.Caution: Stop times are not counted! If the first segment is defined as a gradient, the program starts at the process value, whereby the offset is defined as the time that the controller would have needed with the gradient beginning at the setpoint valid at program start.
T3.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6053 \\ 14245 \\ 22437 \\ 30629 \end{array}$	44874	Float	0...	\square	Only with running program. The remaining programmer time is given by the sum of the currently running segment plus the times of the remaining program segments (w ithout hold times).
T2.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6054 \\ 14246 \\ 22438 \\ 30630 \end{array}$	44876	Float	0...	\square	Only while program is running. The net segment time corresponds to the elapsed segment time.Caution: Stop times are not counted! If the first segment has been defined as a gradient, the start commences at process value, and the offset specified for the first segment corresponds to the time that the controller would have required with a gradient beginning at the actual process value when the program was started.
T4.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6055 \\ 14247 \\ 22439 \\ 30631 \end{array}$	44878	Float	0...	\square	Only with running program. The remaining time of the running program segment (without hold times).
SG.Pr	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6056 \\ 14248 \\ 22440 \\ 30632 \end{array}$	44880	Int	0... 16	\square	A program consists of one or more segments which are arranged and defined by means of the segment numbers. By means of the segment number(s), the program can be changed quickly and specifically at the required point.
Pr.SG	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6060 \\ 14252 \\ 22444 \\ 30636 \end{array}$	44888	Int	1... 16	\square	Segment number for Preset. Preset involves starting the selected program with a different segment than the normal (1st) start segment. The starting setpoint of the preset segment becomes effective immediately, i.e. the program is not started. To use the Preset function, the programmer must be in the Stop or Reset state.

22 ProG

Signa

Name	r/w	Adr. Integer		real	Typ	Value/off	Description
Pr.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6057 \\ 14249 \\ 22441 \\ 30633 \end{array}$	44882	Int	0...16 $\quad \square$	Number of the active program. The program remains active until a reset or a new start is triggered.
SP.En	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 6058 \\ 14250 \\ 22442 \\ 30634 \end{array}$	44884	Float		

23 SEtP

PArA								
Name	r/w	Adr. In	teger	real	Typ	Value/off		Description
SP.LO	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3100 \\ 11292 \\ 19484 \\ 27676 \end{array}$	38968	Float	-1 ...	\square	Lower setpoint limit. The setpoint is raised to this value automatically, if a lower setpoint is adjusted. BUT: The (safety) setpoint W 2 is not restricted by the setpoint limits! The setpoint reserve for the step function is 10% of SPHi - SPLo.
SP.Hi	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3101 \\ 11293 \\ 19485 \\ 27677 \end{array}$	38970	Float	-1 ...	\square	Upper setpoint limit. The setpoint is reduced to this value automatically, if a higher setpoint is adjusted. BUT: The (safety) setpoint W 2 is not restricted by the setpoint limits! The setpoint reserve for the step function is 10% of SPHi - SPLo.
SP. 2	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3102 \\ 11294 \\ 19486 \\ 27678 \end{array}$	38972	Float	-1 ...	\square	Second (safety) setpoint. Ramp function as with other setpoints (effective, external). However, SP2 is not restricted by the setpoint limits.
r.SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3103 \\ 11295 \\ 19487 \\ 27679 \end{array}$	38974	Float	0,01...	\square	Setpoint gradient [/min] or ramp. M ax. rate of change in order to avoid step changes of the setpoint. The gradient acts in the positive and negative directions. Note for self-tuning: with activated gradient function, the setpoint gradient is started from the process value, so that there is no sufficient setpoint reserve.

Stgna								
Name	r/w	Adr. Integer		real	Typ	Value/off		Description
SP.EF	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} \hline 3170 \\ 11362 \\ 19554 \\ 27746 \end{array}$	39108	Float	-1 ...	\square	Effective setpoint. The value reached at the end of setpoint processing, after taking W 2, external setpoint, gradient, boost function, programmer settings, start-up function, and limit functions into account. Comparison with the effective process value leads to the control deviation, from which the necessary controller response is derived.
Diff	r	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3171 \\ 11363 \\ 19555 \\ 27747 \end{array}$	39110	Float	-1 ...	\square	Difference between the effective setpoint and setpoint 2.

23 SEtP

Signal

Name	r/w	Adr. In	ger	real	Typ	Value/off			Description
SP	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3180 \\ 11372 \\ 19564 \\ 27756 \end{array}$	39128	Float	-1	...	\square	Setpoint for the interface (without the additional function 'Controller off'). SetpInterface acts on the internal setpoint before the setpoint processing stage. Note: The value in RAM is always updated. To protect the EEPROM storage of the value in the EEPROM is timed (at least one value per half hour).
SP.d	r/w	$\begin{aligned} & \text { base } \\ & 1 \mathrm{dP} \\ & 2 \mathrm{dP} \\ & 3 \mathrm{dP} \end{aligned}$	$\begin{array}{r} 3181 \\ 11373 \\ 19565 \\ 27757 \end{array}$	39130	Float	-1	\ldots	\square	The effective setpoint is shifted by this value. In this way, the setpoints of several controllers can be shifted together, regardless of the individually adjusted effective setpoints.

24 Tool

[^0]: 2 InP. 1
 Con:

 | Name | r/w | Adr. Integer real | Typ | Value/off | Description | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | Corr | r/w | base | 160 | 33088 | Enum | Enum_Corr3 | M easured value correction / scaling |
 | | | $1 d \mathrm{dP}$ | 8352 | | | | |
 | | | $2 d \mathrm{dP}$ | 16544 | | | | |
 | | | 3 dP | 24736 | | | | |

 1 The offset correction (in the CAL Level) can be done on-line in the process. If InL shows the lower input value of the scaling point, then OuL must be adjusted to the corresponding display value. Adjustments are made via the front panel keys of the device only.
 2 Two-point correction (in CAL-Level) ist possible offline via process value transmitter or on-line in the process. Set process value for the upper and lower scaling point and confirm as input value InL or InH, then set the belonging displayed value OuL and OuH. The settings are done via the front of the device.
 3 Scaling (at PArA-level). The input values for the upper (InL, OuL) and lower scaling point ($\mathrm{InH} . \mathrm{OuH}$) are visible at the parameter level. Adjustment is made via front operation or the engineering tool.

