
Modular Controller System
KS vario

Interface Description
ETHERNET

9499 040 69811

valid from: 7/2004

PMA Prozeß- und Maschinen-Automation GmbH

BlueControl ® is a registered trademark of PMA Prozeß- und Maschinen-Automation GmbH

© PMA Prozeß- und Maschinen-Automation GmbH
Printed in Germany

All rights reserved. No part of this document may be reproduced or published in any form or by any
means without prior written permission from the copyright owner.

A publication of PMA Prozeß- und Maschinen Automation GmbH
Postfach 310229
D-34058 Kassel

Germany

9499-040-69811 3 preliminary

Content

1. General . 5

2. Hints for operation . 5
2.1. Connecting the interface . 5
2.2. Signification of indicator LEDs on the bus coupler. 6
2.3. Forcing . 6
2.4. Fail-safe . 6

3. Communication via Ethernet . 7
3.1. Physical Layer. 7
3.2. Data link layer Ethernet / MAC-ID . 7
3.3. Network layer IP . 7
3.4. Transport layer . 7
3.5. Application layer Modbus/TCP . 7

3.6. IP address of the KS vario system via BootP protocol 8
3.7. IP address of the KS vario system via “BlueControl”engineering tool. 8
3.8. Modbus TCP message format (Application Data Unit) 8
3.9. Function codes . 9

4. Addressing in the Ethernet bus coupler . 10
4.1. Access to data of the cache memory in the bus coupler 10

4.1.1 Definition of transmitted values in the “BlueControl” engineering tool . . 11
4.1.2 Structure of and access to the data cache in the Ethernet bus coupler. . . 12

4.2. Free access to any KS vario data . 13

5. General information on the RTU Modbus protocol . 17
5.1. General . 17

5.1.1 General message structure . 17
5.1.2 Parity (PrtY) . 17
5.1.3 CRC . 18
5.1.4 End identier. 18
5.1.5 Modbus function format . 18
5.1.6 Modbus Functioncodes. 19

5.2. Examples . 20
5.2.1 Read process data data, parameter or configuration data 20
5.2.2 Write a single data (process data, parameter or configuration). 21
5.2.3 Writing several process data, parameter and configuration data 22
5.2.4 Read-out and specification of data in float format 23

5.3. Error report . 24

preliminary 4 9499-040-69811

. 1. General
Modular controller system KS vario permits connection of various fieldbus interfaces. For this purpose, the relevant bus
coupler is used as a head station for a controller system.
Via one of these bus couplers, the ETHERNET (Modbus/TCP protocol) is supported by means of a front-panel interface
(PJ45 connector). Hereby, transmission of all process, parameter and configuration data is possible.
This communication interface permits communication with supervisory systems, visualization tools, etc.
Another standard interface is provided on the KS vario controller modules. This full RS232 interface is used for
connection of the ‘BlueControl’ tool, which runs on a PC.

Transfer rate The Ethernet coupler works as a ModbusTCP server with a maximum transfer rate of 100Mbit.

Clients The Ethernet bus coupler permits communication with up to 4 clients via the TCP/IP protocol.

. 2. Hints for operation

2.1. Connecting the interface

Connect the Ethernet to the front-panel RJ45 interface of the bus coupler.
10BaseT or 100BaseT are used as physical layer.

Physical connection is via Ethernet using twisted two-wire cable (CAT5 cable, 8-pole in RJ-45 connection technology).

Pin allocation
RJ-45

Connection is via an RJ-45 socket, with 2 integrated LEDs.

Green LED on: connected to Ethernet
Yellow LED on: traffic on Ethernet

Contact Signal Description

1 TD + Transmit +

2 TD - Transmit -

3 RD + Receive +

4 - unused

5 - unused

6 RD - Receive -

7 - unused

8 - unused

9499-040-69811 5 preliminary

2.2. Signification of indicator LEDs on the bus coupler

LEDs

LED no. LED colour Function
US green 24 V segment voltage provided

UM green 24V main supply provided

(presently not used)
UB green 24V coupler voltage provided

D1 red ON: no connection to client

D2 red BLINKING: faulty communication

OFF: correct communication

2.3. Forcing

Inputs All physical inputs can be overwritten (configurable) via ETHERNET. Thus e.g. process value measurement via remote
I/O (e.g. VARIO I/O system) and entry via the bus are possible.

Outputs With output forcing, the fail-safe function setting must be taken into account. If "zero" fail-safe behaviour was
adjusted, all outputs are set to zero in case of bus error or master stop, otherwise, their old value remains unchanged. .

2.4. Fail-safe

User parameter setting ‘fail-safe’ determines the instrument behaviour in case of master bus failure or 'bus stop' .
Bus failure
In case of bus failure, the instrument operates according to the following rules.

Fail-safe Reaction in case of bus failure or master stop

Last value Continue operation with the values sent last

Forced analog inputs are set to FAIL

zero Forced analog inputs are set to FAIL 1) .

Forced digital inputs are set to zero

Forced outputs are set to zero

preliminary 6 9499-040-69811

US

UM

UB

D1

D2

PMA

. 3. Communication via Ethernet

3.1. Physical Layer

10BaseT or 100BaseT is used as physical layer.

3.2. Data link layer Ethernet / MAC-ID

Ethernet transports Ethernet packets from a sender to one or several receivers without acknowledgement and without
repetition of lost packets.
Senders and receivers of Ethernet packets are addressed via the MAC-ID. The MAC-ID is a 6-byte ident code, which is
unambiguous, i.e. worldwide different for each unit connected to Ethernet. The MAC-ID consists of two parts. The first
part, i.e. the first 3 bytes, are a manufacturer identification.
The identification of PMA GmbH is 00 0E 0D. The next 3 bytes are determined by the manufacturer and correspond to a
series number. They are unique. The MAC-ID can be used, for instance, for the BOOTP protocol for adjustment of the
TCP/IP number.
For this purpose, a telegram including the information such as name or TCP/IP number is sent to the relevant node.

3.3. Network layer IP

Basis of data communication is the Internet protocol (IP). IP transports data telegrams between communicating units
connected in the same or a different network and provides address management (finding and assignment of MAC-Ids),
segmenting and routing.

3.4. Transport layer

The IP-based transmission control protocol (TCP) enables two hosts to establish a connection and exchange streams of
data. It includes treatment mechanisms. Lost telegrams are repeated.

UDP is a connection-less transport protocol. It does not include control mechanisms during data exchange between
sender and receiver.
This results in a higher processing speed than e.g. with TCP. Checking, whether the telegram has arrived must be done
by the superordinate protocol.

3.5. Application layer Modbus/TCP

Modbus/TCP is a Modbus communication based on the TCP/IP transmission protocols. Ethernet is used as transmission
standard. ModbusTCP follows the client-server model, whereby the ModbusTCP server provides services for clients.
Communication is started by a ‘request’ made by a Modbus TCP client. The server replies this ‘request‘ with an
‘indication‘. When processing in the client is finished, the server sends a ‘response‘ to the client, which is replied with
a ‘confirmation’.
Communication via bridges, routers or gateways is possible.
In the Ethernet bus coupler, the Modbus protocol in RTU (Remote Terminal Unit) mode is used, i.e. each transmitted
message byte contains two hexadecimal characters (0..9, A..F).
Further information is given in the “Modicon Modbus Protocol Reference Guide” of Modicon, Inc., Industrial
Automation Systems. See also chapter 5: “Information on the Modbus protocol”.

9499-040-69811 7 preliminary

3.6. IP address of the KS vario system via BootP protocol

IP-address and sub-net mask can be requested with the BootP protocol. After power-on, the BootP protocol is always
sent, unless an own IP addr. is known. Known means that it was determined using the “BlueControl” engineering tool .

3.7. IP address of the KS vario system via “BlueControl”engineering tool

IP address (4 bytes) and sub-net mask (4 bytes) can be entered into KS vario by the BlueControl tool. KS vario transmits
this information to the bus coupler during transmission. If the IP address is determined as “0” via the tool, the bus
coupler detects this address as invalid and address determination via Boot P becomes relevant.

3.8. Modbus TCP message format (Application Data Unit)

The ADU (Application Data Unit) structure is shown below:

ADU structure

Fields Length Description - Client Server

Transaction
Identifier

2 Bytes Identification of a MODBUS
Request / Response
transaction.

Initialized by the
Client

Recopied by the server from
the received request

Protocol
Identifier

2 Bytes 0 = MODBUS protocol Initialized by the
Client

Recopied by the server from
the received request

Length 2 Bytes Number of following Bytes Initialized by the
Client (request)

Initialized by the
Server(response)

Unit
Identifier

1 Byte Identification of a remote
slave connected on a serial
line or on other buses.

Initialized by the
Client

Recopied by the server from
the received request

Function-
Code

1 Byte Modbus RTU Function-Code

Data x Bytes Data

preliminary 8 9499-040-69811

3.9. Function codes

The following function codes are realized in KS vario:

Function code Signification

0x03 Read process data, parameters or configuration data

0x04 Read process data, parameters or configuration data

0x06 Write a single datum (process data, parameters or configuration)

0x10 Write several data (process data, parameters or configuration)

0x17 Read/write register

Write outputs wordwisely with start address and number of outputs

Read inputs wordwisely with start address and number of inputs

0x2B Read Device Identification

Read manufacturer name, product code and software version. For details, see
chapter 5 “Information on the Modbus protocol”.

Note: No difference between function codes 03 and 04 is made, because it is not possible to make sure that all
masters support both function codes. Function codes 0x17 and 0x2B are supported only by the bus coupler. Thus
access to the process data caches is possible. Free access to any other KS vario data is not possible with this function
code.

9499-040-69811 9 preliminary

. 4. Addressing in the Ethernet bus coupler
In addition to the access to all parameters and data via Modbus addresses, access to selected data (max. 1080 per
direction) of a cache via the BlueControl tool is possible.

Addressing is done via the unit identifier data field of the MBAP header.

Unit Identifier = 0 or 1 --> access to data of the cache memory in the bus coupler
Unit Identifier = 2..255 --> access to KS vario data

4.1. Access to data of the cache memory in the bus coupler

Access using
Unit Identifier
=0 or 1.

Any process data and parameters can be selected in KS vario using the BlueControl tool. This data is updated
continuously in the bus coupler cache memory.

The process data cover a data range of 1080 word data in the write cache and read cache.

preliminary 10 9499-040-69811

4.1.1 Definition of transmitted values in the “BlueControl” engineering tool
BlueControl provides two methods for selecting the data to be read (analogous for write direction):

q Any max. 120 parameters and process data from different channels for writing and max. 120 for
reading. The position determines the order of transmission.

q Additionally or as an alternative, any max. 32 parameters and process data can be selected in common
for all channels. Thus e.g. the process values from all channels (max. 30) can be transmitted by
selecting a datum. In total,. max. 960 write and read data can be defined (32 data x 30 channels).

These selected data (max. 1080 write and 1080 read data) are available in the bus coupler asa cache memory in the
order defined in BlueControl. The indexes or offsets of the individual data are displayed via the BlueControl tool or can
be printed out.

9499-040-69811 11 preliminary

4.1.2 Structure of and access to the data cache in the Ethernet bus coupler
The process data cover a data area of 1080 word data in the write cache and in the read cache. Access is using the
following addresses:

Modbus address Data area Access mode

1...1080 Read cache Read

2001...3080 Write cache Write

Index read cache Content

1

max.120

Any data from any channels

max. 121

max. 1080

Selected data (identical for all channels):

All channel 1 data

All channel 2 data

...

All channel 30 data

Index write cache Content

1

max.120

Any data from any channels

max. 121

max. 1080

Selected data (identical for all channels):

All channel 1 data

All channel 2 data

...

All channel 30 data

preliminary 12 9499-040-69811

4.2. Free access to any KS vario data

Access using
Unit Identifier
= 2..255

The address is coded in 2 bytes. The 2 most significant bits (D15, D14) are used to define the format in which the data
are written or read.

The Modbus directory is divided into segments of equal size of 512 words each (bit D13...D09). Each of these segments
can be used for access to all data for one control channel at a time (1...30 channels).

2 segments have a special status. In the lowest addresssegment (Modbus addr. 0..512), all device data are stored. The
following segment (addr. 512...1023) contains the most important process data from all 30 channels additionally. This
segment is intended for access by visualization facilities.

+ For a detailed address survey of all data, see document:
Parameter table for KS vario (9499-040-72918)

The signification of address bits is as given on the following page.

9499-040-69811 13 preliminary

INTEGER/ FIX-Point Modbus addresses:

MSB LSB

D15 - D14 D13 - D09 D08 - D00

Data format Device, visualization, channel X

Relevant datum

00: Integer

01: Fix Point 1

1X: reserved for float

00000: device data

00001: visualization data

00010: channel 1 data

00011: channel 2 data

....

11111: channel 30 data

Modbus directory (data format: integer):
For the Fix Point 1 area, 4000 hex must be added for the addresses.

Addresses Data
0

511 (1FF hex)

Device data

512 (200 hex)

1023 (3FF hex)

Visualization area
Channel 1..30

1024 (400 hex)

1535 (5FF hex)

Channel 1 data

1536 (600 hex)

2047 (7FF hex)

Channel 2 data

....

15872 (3E00 hex)

16383 (3FFF hex)

Channel 30 data

preliminary 14 9499-040-69811

FLOAT Modbus addresses:

MSB LSB

D15 D14 - D10 D09 - D00

Data format Device, visualization, channel X

relevant datum (offset 2)

0: reserved for integer

and Fix Point 1

1: Float

00000: device data

00001: visualization data

00010: channel 1 data

00011: channel 2 data

....

11111: channel 30 data

Modbus directory (data format: FLOAT):

Addresses Data
32768 (8000 hex)

33791 (83FF hex)

Device data

33792 (8400 hex)

34815 (87FF hex)

Visualization area
Channel 1..30

34816 (8800 hex)

35839 (8BFF hex)

Channel 1 data

35840 (8C00 hex)

36863 (8FFF hex)

Channel 2 data

....

64512 (FC00 hex)

65535 (FFFF hex)

Channel 30 data

These data are 4 bytes long each.

9499-040-69811 15 preliminary

Values which can be transmitted:

Integer: -30000 ... +32000 (resolution: +/-1)
Fix Point 1: -3000.0 ...+3200.0 (resolution: +/- 0,1)
Float: -1.0 E+037...+1.0 E+037 (resolution: +/- 1.4E-045)

The following special values are defined during transmission in integer format:

-31000 This datum is not defined. This value is returned by the controller, unless
a datum within a block is defined with block reading.

-32000 The function is switched off.
-32768 Corresponds to 0x8000 hex. The value to be transmitted is out of the integer range which can be

transmitted.

The following special values are defined for transmission in float format:

-1.5E37 This datum is not defined. This value is returned by the controller,
if a datum within the block is not defined with block reading.

In the code tables (parameter tables for KS vario (9499-040-72918)), the addresses of each parameter for the relevant
data format in decimal values are specified (addr. = integer without digits behind the decimal point; 1 dP = integer with
1 digit behind the decimal point; real = float (IEEE format)).

preliminary 16 9499-040-69811

. 5. General information on the RTU Modbus protocol

5.1. General

The MODBUS protocol was defined for communication between a supervisory system and the Modicon control system.

ASCII and RTU protocols were defined. Instrument KS VARIO supports the RTU protocol.

The structure for transfer of a byte in the RTU protocol is:

Start bit 8 data bits Parity/stop bit Stop bit
Even or odd parity bit can be selected. Unless a parity bit is selected, an additional stop bit is transferred.

5.1.1 General message structure

The message is read in into a data buffer with a max. length of 250 bytes. Longer messages are not accepted. The
instrument does not reply.

The message is composed of the following elements:

Instrument address Function code Data CRC End identifier

• Instrument address (Addr)
The instrument address specifies the instrument. Instrument addresses within 1 - 247 can be defined.
Instrument address 0 is used as a broadcast message. A broadcast message can be defined for write orders,
which are handled by all instruments on the bus. As all instruments handle the order, no reply by the instruments
is given.

• Function code
The function code defines the type of a message. There are 17 defined messages. Which messages are
supported is described in chapter ”Data and function control”.

• Data
The data block comprises the further specification of the action defined with the function code. The data block
length is dependent of function code. For further information, see chapter ”MODBUS function format” (chapter 4
). The internal data buffer includes 256 bytes. I.e., max. 120 integer or 60 real data of a message can be written
or read out.

• CRC
The CRC code ensures that transmission errors can be detected. For further information, see chapter ”CRC”.

• End identifier
The end of a message is defined by a time of 3,5 characters without data transfer. For further information, see
chapter ”End identifier”.

5.1.2 Parity (PrtY)
Even, odd or no parity can be selected.

The parity bit can be used for checking, if there was a single error within a byte during transmission.

With even parity, the parity bit is set so that the sum of set bits in the 8-data bits and the parity bit is an even number.
This is applicable analogously to odd parity.

When detecting a parity error during reception, no reply message is generated.

Unless a parity is selected, 1 or 2 stop bits can be output (determination via configuration).

9499-040-69811 17 preliminary

5.1.3 CRC
The CRC is a 16-bit value which is appended to the message. This value is used to determine, if the transmission of a
message was detected correctly. In conjunction with parity checking, all possible transmission errors should be
detected.

When detecting a parity error during transmission, no reply message is generated.

The algorithm for generating the CRC is:

• Load the CRC register with FFFF

• Exclusive OR function of the send/receive bytes with the high portion of the CRC register

• Shift the CRC register right by 1 bit

• If the shifted bit was 1, connect the CRC register with value A001 by an exclusive OR function.

• Repeat steps 3 and 4 for the other 7 data bits.

• Repeat steps 2 to 5 for all other send/receive bytes.

• Append the result of the CRC register to the message, starting with the high portion. When checking a receive
message, the result in the CRC register is 0, if the message is handled inclusive of the CRC.

5.1.4 End identier
The end identifier of a message is specified as rest situation on the Modbus with a length of 3,5 characters. This time
must elapse, before a slave may start its reply, or before a master can send another message.

The evaluation of a message may start, when the rest condition on the Modbus was met during more than 1,5
characters. However, a reply is started only after 3,5 characters.

5.1.5 Modbus function format
The signification of the data range is different dependent of function code. The Modbus protocol defines 17 different
functions.

To permit reading and writing of process data, parameters and configuration data with a minimum number of accesses,
the relevant ranges are grouped together, whereby process data can be defined several times in different groups.

Example for a transmission

Inquiry: Reply:

Field name Value (hex) Signification Field name Value Signification
Address 11 Address 17 Address 11 Address 17

Function 04 Read
parameter/configuration

Function 04 Read
parameter/configuration

Start address high

Start address low

03

EC

Start address 1004 Number of
bytes

06 6 data bytes are sent

Number of values 00

03

Number of values 03 Value1 04

2A

Value1 = 1066

CRC CRC byte1

CRC byte2

Value2 00

8C

Value2 = 140

Value3 10

3E

Value3 = 4158

CRC CRC byte1

CRC byte2

preliminary 18 9499-040-69811

5.1.6 Modbus Functioncodes
Codetable see chapter 3.9

Details for functionscode 43 (0x2B), Read Device Identification:

Object ID Object Name / Description Type M/O category

0x00 VendorName ASCII String Mandatory Basic

0x01 ProductCode ASCII String Mandatory

0x02 MajorMinorRevision ASCII String Mandatory

0x03 VendorUrl ASCII String Optional Regular

0x04 ProductName ASCII String Optional

0x05 ModelName ASCII String Optional

0x06 UserApplicationName ASCII String Optional

0x07
…
0x7F

Reserved Optional

0x80
…
0xFF

Private objects may be optionally defined. The
range (0x080 - 0xFF) is product depandant

Device
dependant

Optional Extended

Accessses at the basic- and regular-objects are supported. Level 2 is supported as conformity level [regular
identification (stream access only)].

REQUEST

Function Code 1 Byte 0x2B

MEI Type * 1 Byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04

Object ID 1 Byte 0x00 to 0xFF

MEI= Modbus Encapsulated Interface

RESPONSE

Function Code 1 Byte 0x2B

MEI Type 1 Byte 0x0E

Read Device ID code 1 Byte 01 / 02 / 03 / 04

Conformity level 1 Byte

More Folows 1 Byte 00 / FF

Next Object Id 1 Byte Object ID number

Number of objects 1 Byte

List of

Object ID 1 Byte

Object length 1 Byte

Object Value Object length Depending on the object ID

ERROR

Function Code 1 Byte 0xAB:

Fc 0x2B + 0x80

MEI Type 1 Byte 14

Exception Code 1 Byte 01, 02, 03, 04

Object Contens:
Object: 0 = PMA Prozeß- und Maschinen-Automation GmbH
Object: 1 = KS VARIO BK ETH
Object: 2 = V1.00 (aktuelle Softwareversion)
Object: 3 = pma-online.de
Object: 4 = KSvario
Object: 5 = Ethernet
Object: 6 = KSVC-101-00131

9499-040-69811 19 preliminary

5.2. Examples

5.2.1 Read process data data, parameter or configuration data
The structure of a message is:

Inquiry:
Field name Value Signification

Address 11 Address 17

Function 03 or 04 Read process data data, parameter or configuration data

Start address high

Start address low

04

98

Start address 0498 (ti1 / channel 1)

Number of values 00

02

2 data

CRC CRC byte1

CRC byte2

Reply:

Field name Value Signification

Address 11 Address 17

Function 03 or 04 Read process data data, parameter or configuration data

Number of bytes 04 4 data bytes are sent

Parameter1 00

B4

Process data data, parameter/configuration datum

0498= 180

Parameter ti2 01

4D

Process data data, parameter/configuration datum

0499= 333

CRC CRC byte1

CRC byte2

Broadcast is not possible.

Unless the 1st parameter / configuration datum was defined, error message ”ILLEGAL DATA ADDRESS” is generated.

Unless other values after the 1st value in the area to be read out are defined, these are entered with value ”NOT
DEFINED VALUE”. This can be used for reading out areas with gaps using a message

5.2.2 Write a single data (process data, parameter or configuration)
The structure of a message is:
Inquiry:
Field name Value Signification

Address 11 Address 17

Function 06 Write a single datum (process data, parameter or configuration)

Write address high

Write address low

0D

57

Write address 15990 (SetpInterface of channel 30)

Value = 123 00

7B

CRC CRC byte1

CRC byte2

Reply:
Field name Value Signification

Address 11 Address 17

Function 06 Write a single datum (process data, parameter or configuration)

Write addr. high

Write addr. low

3E

76

Write address 15990 (SetpInterface of channel 30)

Value = 123 00

7B

CRC CRC byte1

CRC byte2

preliminary 20 9499-040-69811

The structure of a correct reply message is exactly as defined.
Broadcast is possible.

Entry in real data format is not possible, because only values of 2 bytes can be transmitted.

If the value is out of the adjustable range, error message ”ILLEGAL DATA VALUE” is generated. The datum remains
unchanged.
Unless the datum can be written (e.g. configuration datum and the instrument is on-line), error message ”ILLEGAL
DATA VALUE” is generated.

5.2.3 Writing several process data, parameter and configuration data
The structure of a message is:

Inquiry:

Field name Value Signification

Address 11 Address 17

Function 10 Write several process data data, parameter or configuration data

Start address high

Start addresse low

0D

57

Write address 3415

Number of values 00

02

2 values

Number of bytes 04 4 data bytes are sent

Parameter/configuration
datum 15

00

DE

Process data datum, parameter or configuration datum

3415 = 222

Parameter/configuration
datum 16

01

4D

Process data datum, parameter or configuration datum

3416 = 333

CRC CRC byte1

CRC byte2

Reply:

Field name Value Signification

Address 11 Address 17

Function 10 Write several process data data, parameter or configuration data

Start address high

Start address low

0D

57

Write address 3415

Number of values 00

02

2 process data data, parameter/configuration data

CRC CRC byte1

CRC byte2

Broadcast is possible.

Unless the 1st value was defined, an error message ”ILLEGAL DATA ADDRESS” is generated.

Unless the 1st value can be written (configuration and instrument is on-line), an error message ”ILLEGAL DATA VALUE”
is generated.

Unless other values in the defined range after the 1st value are defined or can be written instantaneously, these values
are overread. Data in these positions are not changed. The purpose is to change parts with gaps or which cannot be
written instantaneously by means of a message. No error message is output.

If values are out of the adjustable limits, error message ”ILLEGAL DATA VALUE” is generated. Evaluation of the
following data is omitted. Data which were already stored correctly are active.

The Modbus does not provide information related to the error position in its error report. If this is required, a datum
containing the position of the last error must be defined. In case of error, this datum can be read out by the master.

9499-040-69811 21 preliminary

5.2.4 Read-out and specification of data in float format
Level-1 data, parameter and configuration data in float format can be read out and written. (Function codes 03, 04, 16)
Writing single data in float format with code 06 is not possible, since only 2 bytes for the value of the datum can be
transmitted by means of this function.

If data in float format are required, the address of the required datum must be calculated as follows:
Address of the datum in integer format multiplied with factor 2
Addition of an offset of 8000H.

In ”Number of values”, a value twice as high as with a message for data in integer format is required.
Accordingly, the value in field ”Number of data bytes” is twice as high.

All data are always converted into float values. This is also applicable to status or control words.
The data are transmitted in Motorola format (exponent followed by mantissa first).
The float format structure of a message as described in the previous chapter is:

Inquiry:

Field name Value Signification

Address 11 Address 17

Function 10 Write several process data data, parameter or configuration data

Start address high

Start address low

9A

AE

Write address 2 * 3415 + 8000H for float format

Number of values 00

04

2 values in float format

Number of bytes 08 8 data bytes are sent

Parameter/configuratio
n datum 15

43 5E

00 00

Process data datum, parameter or configuration datum

3415 = 222

Parameter/configuratio
n datum 16

43 A6

80 00

Process data datum, parameter or configuration datum

3416 = 333

CRC CRC byte1

CRC byte2

Reply:

Field name Value Signification

Address 11 Address 17

Function 10 Write several process data data, parameter or configuration data

Start address high

Start address low

9A

AE

Write address 2 * 3415 + 8000H for float format

Number of values 00

04

2 process data data, parameter or configuration data in float format

CRC CRC byte1

CRC byte2

preliminary 22 9499-040-69811

5.3. Error report

The error report is generated, when interpretation or changing a datum are not possible, although the message was
received correctly.

When detecting a transmission error, no reply is given. The master must resend the message.

Detected transmission errors are:

• Parity error

• Framing error (no stop bit received)

• Overrun error (receive buffer overflow, or data could not be fetched in time by the UART)

• CRC error

The data structure of the error report is:
Field name Value Signification

Address 11 Address 17

Function 90 Error report for message Write several parameter/configuration data

Error code 02 ILLEGAL DATA ADDRESS

CRC CRC byte1

CRC byte2

In field Function, the most significant bit is set.
The error code is transmitted in the following byte.

The following error codes are defined:
Code Name Signification

01 ILLEGAL FUNCTION The received function code is not defined in the instrument.

02 ILLEGAL DATA ADDRESS The received address is not defined in the instrument.

When reading (function code 01, 03, 04) or writing (function code 0F, 10) several
data simultaneously, this error is generated only, unless the first datum is
defined.

03 ILLEGAL DATA VALUE The received value is out of the adjusted limits or cannot be written
instantaneously (instrument is not in configuration mode).

When writing several data simultaneously (function code 0F, 10), this error is
generated only, unless the first datum can be written.

06 SLAVE DEVICE BUSY Will be sent back, if no communication channel is available.

The buscoupler supports max. 16 communication channels

0B GATEWAY TARGET
DEVICE FAILED TO
RESPOND

Will be sent back, if no communication is possible with KSvario

The Modbus protocol includes further defined error codes, which, however, are presently not supported:

Code Name Signification

04 SLAVE DEVICE FAILURE A non-reproducible error occurred during message processing.

05 ACKNOWLEDGE The instrument has received an inquiry and handles it. As handling takes a very
long time, this reply is output to prevent an interface timeout. The master can poll
the diagnosis, to find out if handling is finished.

07 NEGATIVE
ACKNOWLEDGE

The instrument cannot handle the requested order. This error message can be
output for changing a configuration datum, although the instrument is not in
configuration mode.

08 MEMORY PARITY ERROR Parity error found when reading the memory.

9499-040-69811 23 preliminary

Subject to alterations without notice. © PMA Prozeß- und Maschinen-Automation GmbH
Bei Änderungen erfolgt keine Mitteilung. Postfach 310 229, D - 34058 Kassel
Modifications sans avertissement réservées. Printed in Germany 9499 040 69718 (06/2008)

A4

	Inhalt
	1. General 5
	2. Hin ts for operation 5
	 2.1. Connecting the interface 5
	 2.2. Signification of indicator LEDs on the bus coupler 6
	 2.3. For cing 6
	 2.4. Fail-safe 6

	3. Communication via Ethernet 7
	 3.1. Phy si cal Lay er 7
	 3.2. Data link lay er Ether net / MAC-ID 7
	 3.3. Net work lay er IP 7
	 3.4. Trans port lay er 7
	 3.5. Appli ca ti on lay er Mod bus/TCP 7
	 3.6. IP address of the KS vario system via BootP protocol 8
	 3.7. IP address of the KS vario system via ﬁBlue Con trolﬂengineering tool 8
	 3.8. Mod bus TCP message format (Ap pli ca ti on Data Unit) 8
	 3.9. Function codes 9

	4. Addres sing in the Ether net bus coupler 10
	 4.1. Access to data of the ca che memory in the bus coupler 10
	 4.1.1 De fi ni ti on of transmitted values in the ﬁBlue Con trolﬂ engineering tool 11
	 4.1.2 Structure of and access to the data cache in the Ether net bus coupler 12

	 4.2. Free access to any KS vario data 13

	5. General information on the RTU Modbus protocol 17
	 5.1. General 17
	 5.1.1 General message structure 17
	 5.1.2 Parity (PrtY) 17
	 5.1.3 CRC 18
	 5.1.4 End identier 18
	 5.1.5 Modbus function format 18
	 5.1.6 Modbus Functioncodes 19

	 5.2. Examples 20
	 5.2.1 Read process data data, parameter or configuration data 20
	 5.2.2 Write a single data (process data, parameter or configuration) 21
	 5.2.3 Writing several process data, parameter and configuration data 22
	 5.2.4 Read-out and specification of data in float format 23

	 5.3. Error report 24

	Index
	A
	Adressierung im Modbuskoppler10

	B
	Bridges7

	G
	Gateways7

	I
	Indication7

	M
	ModbusTCP7
	ModbusTCP-Server5
	Modicon7

	R
	Request7
	Response7
	RJ-455
	Router7

	T
	TCP/IP-Protokoll5

