

PROFILE

Mineral-insulated thermocouples correspond in form and design to the current DIN / IEC rules respectively are quite close. The thermocouple conductors are embedded in a closely compacted, inert mineral powder and surrounded by a metal sheath to form a hermetically sealed assembly. The sheath functions as a useful protective cover in many situations. They are applied in locations where fast response, reduced space and or vibration resistance is a need. They can be furnished with a fixed cable or with a special plug which allows rapid fitting or exchange.

TECHNICAL DATA

Meets DIN IEC 65 B (CO) 76

Sheath

- Stainless steel SS 321 (1.4541)
- Inconel 600, 2.4816

THERMOCOUPLE

Type K to IEC 584 Type L to IEC 584 Type J to DIN 43710

- Single and duplex sensor
- Measuring junction isolated and grounded

Isolation resistance

1000 $M\Omega$ at room temperature At higher temperatures as also with smaller diameter the resistance is reduced.

Temperature limits

Element	Sheath 1.4541	Sheath 2.4816		
Туре К	max. 800 °C	max. 1100 °C		
Type L	max 800 °C			
Type J	max 800 °C			

Temperature at the cable junction

With standard extension lead +70 °C In general 200 °C

APPLICATION HINTS

The above mentioned max. temperatures are valid for clean air only. At higher temperatures especially with cyclic charges the thickness of the sheath decreases due to tindering. Agressive parts of the measuring medium attack the sheath material.

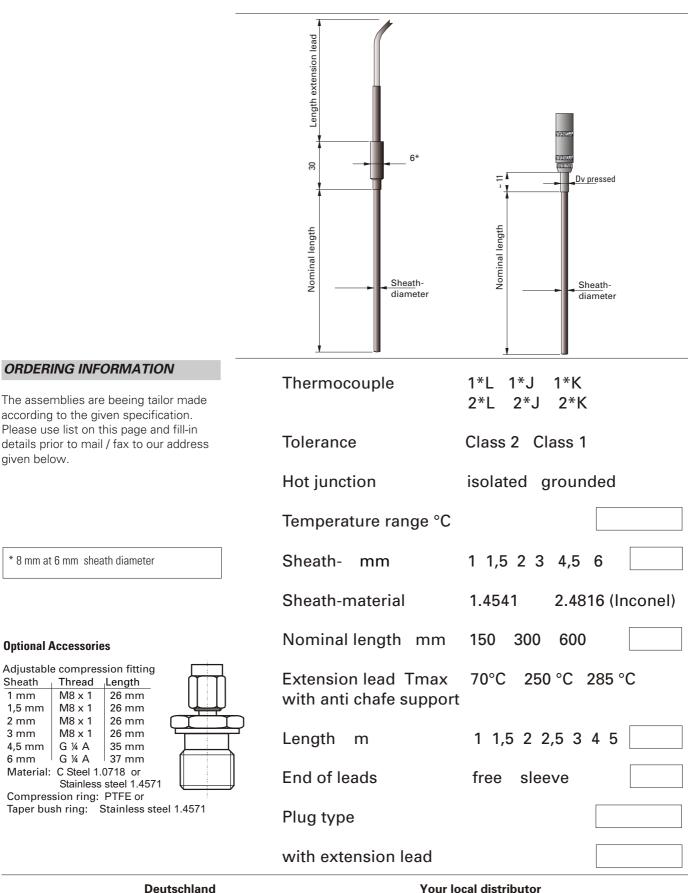
Especially with sensors with small diameter life time decreases tremendeously at higher operating temperatures.

Measuring medium	Max. temperature [°C]		
	1.4541	2.4816	
Air	approx. 800	approx. 1100	
Carbon dioxide	approx. 650	approx. 500	
Petrol	approx. 100	Not	
Benzene	approx. 100		
Boric acid	approx. 100		
Buthyl alcohol	approx. 100		
Phosphoric acid 50%	approx. 100		
Nitric acid	approx. 100		
Sodium, liquid		approx. 750	
Air, with sulfur	Not	approx. 550	
Water, not chlorinated	recommended	approx. 590	

(Not subject for completeness)

Application examples

1.4541	2.4816 Reaction vessels Plast and fibre	
Chemical engineering		
Petro chemistry		
Food and Beverage	Pulp and paper	
Thermprocess	Boiler	


REACTION TIME

Measuring junction isolated	Reaction time in [s] water at 0,2 m/s Air at 2,0 m/s					
[mm]	t 0,5	t 0,9	t 0,5	t 0,9		
0,5	0,06	0,13	1,8	5,5		
1,0	0,15	0,5	3	10		
1,5	0,21	0,6	8	25		
3,0	1,2	2,9	23	80		
4,5	2,5	5,9	37	120		
6,0	4	9,6	60	200		
Measuring j	Aeasuring junction grounded					
0,5	0,03	0,1	1,8	6		
1,0	0,06	0,18	3	10		
1,5	0,13	0,4	8	25		
3,0	0,22	0,75	23	80		
4,5	0,45	1,6	33	110		
6,0	0,55	2,6	55	185		

Special remarks

M.I. thermocouples can be bent at a radius 5 times of sheath diameter.

Because of the inflexible attachement between sheath and thermoconductors at higer operating temperatures intense mechanical strength is applied to the thermoconductors. This leads to increased drift at extended operating time.

PMA Prozess- und Maschinen- Automation GmbH Miramstrasse 87, D-34123 Kassel

Your local distributor

Tel./Fax: (0561) 505 - 1307/-1710 E-mail: mailbox@pma-online.de Internet: http://www.pma-online.de

Sheath

1 mm

2 mm 3 mm

1,5 mm

4.5 mm

PM

6 mm