I/O Extension Module With Four Digital Outputs

This data sheet is only valid in association with the documents of the used fieldbus coupler

Function

The terminal is designed for use within an VARIO station.. It is used to output digital signals.

Features

- Connections for four digital actuators
- Connection of actuators in 2- and 3-wire technology
- Nominal current per output: 0.5 A.
- Total current of the terminal: 2 A .
- Short-circuit and overload protected outputs
- Diagnostic and status indicators

Figure 1

108
All modules will be delivered including connectors and labeling fields

Figure 2 VARIO DO 4/24 with appropriate connector

Local Diagnostic and Status Indicators

Des.	Color	Meaning
\mathbf{D}	Green	Bus diagnostics
$\mathbf{1 , 2 ,}$	Yellow	Status indicators of the
$\mathbf{3 , 4}$		outputs

Terminal Assignment

Terminal Point	Assignment
$\mathbf{1 . 1}$	Signal output (OUT 1)
2.1	Signal output (OUT 2)
$\mathbf{1 . 2 , 2 . 2}$	Ground contact (GND) for 2- and 3-wire termination
$\mathbf{1 . 3 , 2 . 3}$	FE connection for 3-wire termination
$\mathbf{1 . 4}$	Signal output (OUT 3)
$\mathbf{2 . 4}$	Signal output (OUT 4)
$\mathbf{1 . 5 , 2 . 5}$	Ground contact (GND) for 2- and 3-wire termination
$\mathbf{1 . 6 , 2 . 6}$	FE connection for 3-wire termination

Internal Circuit Diagram

5557A003

Key:
\square INTERBUS protocol chip (bus logic including voltage conditioning)

辛	LED
	Optocoupler
-K	Transistor

\# Digital output

Isolated area

ofc	INTERBUS protocol chip (bus logic including voltage conditioning)

Figure 3 Internal wiring of the terminal points

Connection Example

\triangle
When connecting the actuators, observe the assignment of the terminal points to the fielbus output data (see page 5).

Figure 4 Typical actuator connections
A 3-wire termination
B 2-wire termination

Programming Data

ID code	$\mathrm{BD}_{\text {hex }}\left(189_{\mathrm{dec}}\right)$
Length code	$41_{\text {hex }}$
Process data channel	4 bits
Input address area	0 bits
Output address area	4 bits
Parameter channel (PCP)	0 bits
Register length (bus)	4 bits

Process Data

IN process data is not available.

Assignment of the Terminal Points to the OUT Process Data

Bit view	Bit	3	2	1	0
Assignment	Terminal point (signal)	2.4	1.4	2.1	1.1
	Terminal point (GND)	2.5	1.5	2.2	1.2
	Terminal point (FE)	2.6	1.6	2.3	1.3
Status indicator	LED	4	3	2	1

Technical Data

General Data	
Housing dimensions (width x height x depth)	$12.2 \mathrm{~mm} \times 120 \mathrm{~mm} \times 71.5 \mathrm{~mm}$ $(0.480 \mathrm{in} . \times 4.724 \mathrm{in} . \times 2.815 \mathrm{in})$.
Weight	44 g (without connector)
Operating mode	Process data operation with 4 bits
Connection method of the actuators	2 -wire and 3-wire technology
Permissible temperature (operation)	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Permissible temperature (storage/transport)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Permissible humidity (operation)	75% on average, $85^{\circ} \%$ occasionally

Permissible humidity (storage/transport)	75% on average, 85% occasionally

For a short period, slight condensation may appear on the housing if, for example, the terminal is brought into a closed room from a vehicle.

Permissible air pressure (operation)	80 kPa to 106 kPa (up to 2000 m [6562 ft.] above sea level)
Permissible air pressure (storage/transport)	70 kPa to 106 kPa (up to 3000 m [9843 ft.] above sea level)
Degree of protection	IP 20 according to IEC 60529
Class of protection	Class 3 according to VDE 0106, IEC 60536

Interface	
local bus interface	Through data routing

Power Consumption	
Communications power	7.5 V
Current consumption from the local bus	44 mA, maximum
Power consumption from the local bus	0.33 W, maximum
Segment supply voltage U_{S}	$24 \mathrm{~V} \mathrm{DC} \mathrm{(nominal} \mathrm{value)}$
Nominal current consumption at U_{S}	$2 \mathrm{~A} \mathrm{(4} \mathrm{\times 0.5A)} maximum$,

Supply of the Module Electronics and I/O Through Bus Terminal/Power Terminal	
Connection method	Through potential routing

Digital Outputs	
Number	4
Nominal output voltage U UUT	24 V DC
Differential voltage for $\mathrm{I}_{\text {nom }}$	$\leq 1 \mathrm{~V}$
Nominal current $\mathrm{I}_{\text {nom }}$ per channel	0.5 A
Tolerance of the nominal current	+10\%
Total current	2 A
Protection All four channels are th channels.	Short-circuit; overload , i.e., an error in one channel can affect the other
Nominal load Ohmic Lamp Inductive	$\begin{aligned} & 48 \Omega / 12 \mathrm{~W} \\ & 12 \mathrm{~W} \\ & 12 \mathrm{VA}(1.2 \mathrm{H}, 50 \Omega) \end{aligned}$
Signal delay upon power up of - Ohmic nominal load - Lamp nominal load - Inductive nominal load	$100 \mu \mathrm{~s}$, typical 100 ms , typical (with switching frequencies up to 8 Hz ; above this frequency the lamp load responds like an ohmic load) 100 ms , typical (1.2 H, 50Ω)
Signal delay upon power down of - Ohmic nominal load - Lamp nominal load - Inductive nominal load	1 ms , typical 1 ms , typical 50 ms , typical (1.2 H, 50Ω)

Digital Outputs (Continued)

Switching frequency with

- Ohmic nominal load

300 Hz , maximum
This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.

- Lamp nominal load

300 Hz , maximum

3
This switching frequency is limited by the selected data rate, the number of bus devices, the bus structure, the software, and the control or computer system used.

- Inductive nominal load	0.5 Hz, maximum $(1.2 \mathrm{H}, 50 \Omega)$
Overload response	Auto restart
Response time with ohmic overload (12Ω)	3 s, approximately
Restart frequency with ohmic overload	250 Hz, approximately
Restart frequency with lamp overload	250 Hz, approximately
Inductive overload response	Output may be damaged
Response time after short circuit	850 ms, approximately
Reverse voltage endurance against short pulses	Protected against reverse voltages
Strength against permanently applied reverse voltages	Up to 2 A DC
Strength against permanently applied surge voltage	No
Validity of output data after connection of 24 V voltage supply (power up)	5 ms, typical
Response upon power down	The output follows the supply voltage without delay.
Limitation of the demagnetization voltage induced on circuit interruption	$-15 \mathrm{~V} \leq \mathrm{U}_{\text {demag }} \leq-46 \mathrm{~V}$ $\left(\mathrm{U}_{\text {demag }}=\right.$ demagnetization voltage)
Single maximum energy in free running	400 mJ, maximum
Protective circuit type	Integrated 45 V Zener diode in output chip

Digital Outputs (Continued)	
Overcurrent shutdown	At 0.7 A, minimum
Output current when switched off	$300 \mu \mathrm{~A}$, maximum
Output voltage when switched off	2 V, maximum
Output current with ground connection interrupted	25 mA, maximum
Switching power with ground connection interrupted	100 mW at $1 \mathrm{k} \Omega$ load resistance, typical
Inrush current with lamp load	1.5 A for 20 ms, maximum

Output Characteristic When Switched On (Typical)	
Output Current (A)	Differential Output Voltage (V)
0	0
0.1	0.04
0.2	0.08
0.3	0.12
0.4	0.16
0.5	0.20

Power Dissipation

Formula to Calculate the Power Dissipation of the Electronics

$$
P_{E L}=0.19 \mathrm{~W}+\sum_{n=1}^{4}\left(0.10 \mathrm{~W}+\mathrm{I}_{\mathrm{Ln}}{ }^{2} \times 0.4 \Omega\right)
$$

Where

$P_{\text {tot }}$	Total power dissipation of the module
n	Index of the number of set outputs $n=1$ to 4

In Load current of the output n
Power Dissipation of the Housing $\mathbf{P}_{\mathrm{HOU}}$
0.6 W, maximum (within the permissible operating temperature)

Concurrent Channel Derating

Ambient temperature (TA)	Maximum load current at		
	$\mathbf{1 0 0 \%}$ simultaneity	$\mathbf{7 5 \%}$ simultaneity	$\mathbf{5 0 \%}$ simultaneity
$\leq 35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$	0.5 A	0.5 A	0.5 A
$\leq 45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$	0.375 A	0.5 A	0.5 A
$\leq 55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$	0.25 A	0.33 A	0.5 A

With 100% simultaneity, a load current of 0.5 A for each channel is permissible up to $35^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right)$ (ambient temperature range), a load current of 0.375 A between $35^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}\right.$ and $113^{\circ} \mathrm{F}$), and a load current of 0.25 A up to $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$.

If a maximum of two channels are operated in the permissible ambient temperature range (50% simultaneity), a load current of 0.5 A can be tapped.

If all four channels are used you must define the permissible working point according to the above formula.

Safety Devices	
Overload/short-circuit in segment circuit	Electronic; with 4-channel driver
Surge voltage	Protective circuits of the power terminal Protection up to 33 V DC
Polarity reversal of voltage supply	Protective circuits of the power terminal It is necessary to protect the voltage supply. The power supply unit should be able to supply 4 times (400\%) the nominal current of the external fuse.
Reverse voltage	Protection up to 2 A DC

Electrical Isolation

\triangle
To provide electrical isolation between the logic level and the I/O area, it is necessary to supply the station bus terminal and the digital output terminal described here using the bus terminal or a power terminal from separate power supply units. Interconnection of the 24 V power supplies is not allowed.

Common Potentials

24 V main power, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.

$\|$Separate Potentials in the System Consisting of Bus Terminal/Power Terminal and I/O Terminal
- Test Distance
5 V supply incoming remote bus/7.5 V supply (bus logic)
5 V supply outgoing remote bus/7.5 V supply (bus logic)
7.5 V supply (bus logic)/24 V supply (I/O)
24 V supply (I/O)/functional earth ground

Ordering Data

Description	Order Designation	Order No.
Terminal with four digital outputs	VARIO DO 4/24	KSVC-102-00231

PMA Prozess- und Maschinen-Automation GmbH
Miramstrasse 87
34123 Kassel
Germany

```
% +49-(0)561 505-1307
    +49-(0)561 505-1710
    www.pma-online.de
```

